Classifying pointed Hopf algebras of dimension 16

被引:16
|
作者
Caenepeel, S
Dascalescu, S
Raianu, S
机构
[1] Univ Brussels, VUB, Fac Sci Appl, B-1050 Brussels, Belgium
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest, Romania
关键词
D O I
10.1080/00927870008826843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify pointed Hopf algebras of dimension 16 over algebraically closed field of characteristic zero. Apart from the 14 group algebras, there are 29 such Hopf algebras. All of them can be obtained using the Ore extension construction, as described recently by Beattie, the second author, and Grunenfelder.
引用
收藏
页码:541 / 568
页数:28
相关论文
共 50 条
  • [1] Pointed Hopf algebras of dimension 32
    Graña, M
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) : 2935 - 2976
  • [2] On pointed Hopf algebras of dimension pn
    Beattie, M
    Dascalescu, S
    Grünenfelder, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) : 361 - 367
  • [3] On non-connected pointed Hopf algebras of dimension 16 in characteristic 2
    Xiong, Rongchuan
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (10)
  • [4] Classifying Hopf algebras of a given dimension
    Beattie, Margaret
    Andres Garcia, Gaston
    [J]. HOPF ALGEBRAS AND TENSOR CATEGORIES, 2013, 585 : 125 - +
  • [5] On pointed Hopf algebras of dimension 2n
    Caenepeel, S
    Dascalescu, S
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 17 - 24
  • [6] On pointed Hopf algebras of dimension p5
    Graña, M
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2000, 42 : 405 - 419
  • [7] Hopf Algebras of Dimension 16
    Gastón Andrés García
    Cristian Vay
    [J]. Algebras and Representation Theory, 2010, 13 : 383 - 405
  • [8] Pointed Hopf algebras of dimension p3
    Caenepeel, S
    Dascalescu, S
    [J]. JOURNAL OF ALGEBRA, 1998, 209 (02) : 622 - 634
  • [9] Hopf Algebras of Dimension 16
    Garcia, Gaston Andres
    Vay, Cristian
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (04) : 383 - 405
  • [10] INDICATORS OF POINTED HOPF ALGEBRAS OF DIMENSION pq OVER CHARACTERISTIC p
    Chen, Si
    Liu, Tiantian
    Wang, Linhong
    Wang, Xingting
    [J]. MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2018, 30 (02) : 176 - 184