Superresolution Land-Cover Mapping Based on High-Accuracy Surface Modeling

被引:15
|
作者
Chen, Yuehong [1 ]
Ge, Yong [1 ,2 ]
Song, Dunjiang [3 ]
机构
[1] Univ Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[2] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Policy & Management, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
High-accuracy surface modeling (HASM); land-cover; remote sensing imagery; superresolution mapping (SRM); SHIFTED IMAGES; PIXEL; INTERPOLATION;
D O I
10.1109/LGRS.2015.2489683
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new superresolution mapping (SRM) method based on high-accuracy surface modeling (HASM) is proposed to generate land-cover maps at the subpixel scale. HASM uses the fundamental theorem of surfaces to uniquely define a land surface, which can produce less errors in interpolation results than classic methods, and thus, the proposed SRM method first uses it to estimate the soft class values of subpixels according to the fraction images of soft classification. Then, it transforms the soft class values into a hard-classified land-cover map using class allocation under the constraints of fraction images. Experiments on a synthetic image and a real remote sensing image show that the proposed method produces more accurate SRM maps than four existing SRM methods. Hence, the proposed method provides a new option for superresolution land-cover mapping.
引用
收藏
页码:2516 / 2520
页数:5
相关论文
共 50 条
  • [1] Object-Based Superresolution Land-Cover Mapping From Remotely Sensed Imagery
    Chen, Yuehong
    Ge, Yong
    Heuvelink, Gerard B. M.
    An, Ru
    Chen, Yu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 328 - 340
  • [2] Learning-Based Superresolution Land Cover Mapping
    Ling, Feng
    Zhang, Yihang
    Foody, Giles M.
    Li, Xiaodong
    Zhang, Xiuhua
    Fang, Shiming
    Li, Wenbo
    Du, Yun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07): : 3794 - 3810
  • [3] Assessing land-cover map accuracy for the South African land-cover database
    Fairbanks, DHK
    Thompson, MW
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 1996, 92 (10) : 465 - 470
  • [4] EVALUATION OF THEMATIC MAP ACCURACY IN A LAND-USE AND LAND-COVER MAPPING PROGRAM
    DICKS, SE
    LO, THC
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1990, 56 (09): : 1247 - 1252
  • [5] Multiobjective Subpixel Land-Cover Mapping
    Ma, Ailong
    Zhong, Yanfei
    He, Da
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 422 - 435
  • [6] Integrating Land-Cover Products Based on Ontologies and Local Accuracy
    Zhu, Ling
    Jin, Guangshuai
    Gao, Dejun
    [J]. INFORMATION, 2021, 12 (06)
  • [7] Subpixel Land-Cover Mapping Based on Extended Random Walker
    Wang, Peng
    Zhang, Gong
    Bi, Hui
    Leung, Henry
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 272 - 276
  • [8] Object-Based High-Resolution Land-Cover Mapping Operational Considerations
    O'Neil-Dunne, Jarlath
    Pelletier, Keith
    MacFaden, Sean
    Troy, Austin
    Grove, J. Morgan
    [J]. 2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 851 - +
  • [9] A land-cover data infrastructure for measurement, modeling, and analysis of land-cover change dynamics
    Aspinall, R
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2002, 68 (10): : 1101 - 1105
  • [10] A Superresolution Framework for High-Accuracy Multiview Reconstruction
    Goldluecke, Bastian
    Cremers, Daniel
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 342 - 351