Structural stability and hyperbolicity violation in high-dimensional dynamical systems

被引:21
|
作者
Albers, D. J. [1 ]
Sprott, J. C.
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Univ Calif Davis, Computat Sci & Engn Ctr, Davis, CA 95616 USA
关键词
D O I
10.1088/0951-7715/19/8/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This report investigates the dynamical stability conjectures of Palis and Smale and Pugh and Shub from the standpoint of numerical observation and lays the foundation for a stability conjecture. As the dimension of a dissipative dynamical system is increased, it is observed that the number of positive Lyapunov exponents increases monotonically, the Lyapunov exponents tend towards change with respect to parameter variation, the number of observable periodic windows decreases (at least below numerical precision) and a subset of parameter space exists such that topological change is very common with small parameter perturbation. However, this seemingly inevitable topological variation is never catastrophic (the dynamic type is preserved) if the dimension of the system is high enough.
引用
收藏
页码:1801 / 1847
页数:47
相关论文
共 50 条
  • [1] Chaos in high-dimensional dissipative dynamical systems
    Iaroslav Ispolatov
    Vaibhav Madhok
    Sebastian Allende
    Michael Doebeli
    Scientific Reports, 5
  • [2] Chaos in high-dimensional dissipative dynamical systems
    Ispolatov, Iaroslav
    Madhok, Vaibhav
    Allende, Sebastian
    Doebeli, Michael
    SCIENTIFIC REPORTS, 2015, 5
  • [3] Transition to high-dimensional chaos in nonsmooth dynamical systems
    Du, Ru-Hai
    Qu, Shi-Xian
    Lai, Ying-Cheng
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [4] HIGH-DIMENSIONAL CHAOS IN DISSIPATIVE AND DRIVEN DYNAMICAL SYSTEMS
    Musielak, Z. E.
    Musielak, D. E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (09): : 2823 - 2869
  • [5] HIGH-DIMENSIONAL CHAOS IN DELAYED DYNAMICAL-SYSTEMS
    LEPRI, S
    GIACOMELLI, G
    POLITI, A
    ARECCHI, FT
    PHYSICA D, 1994, 70 (03): : 235 - 249
  • [6] Bifurcations and persistence of equilibria in high-dimensional lattice dynamical systems
    Qin, WX
    Chen, YH
    NONLINEARITY, 2004, 17 (02) : 519 - 539
  • [7] Application of adaptive multilevel splitting to high-dimensional dynamical systems
    Baars, S.
    Castellana, D.
    Wubs, F. W.
    Dijkstra, H. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 424
  • [8] Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems
    Farazmand, Mohammad
    Sapsis, Themistoklis P.
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [9] LINEAR-STABILITY OF HIGH-DIMENSIONAL SYMPLECTIC SYSTEMS
    GAUTERO, JL
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (06): : 657 - 666
  • [10] On the Validity of Linear Response Theory in High-Dimensional Deterministic Dynamical Systems
    Wormell, Caroline L.
    Gottwald, Georg A.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1479 - 1498