Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation

被引:27
|
作者
Yan, Xue-Wei [1 ,2 ]
Tian, Shou-Fu [1 ,2 ]
Dong, Min-Jie [1 ,2 ]
Wang, Xiu-Bin [1 ,2 ]
Zhang, Tian-Tian [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Inst Math Phys, Xuzhou 221116, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Conservation Laws; Interaction Solutions; Jacobi Elliptic Function; Lie Point Symmetry; The Generalised Dispersive mBBM Equation; PERIODIC-WAVE SOLUTIONS; KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR SCHRODINGER-EQUATION; (2+1)-DIMENSIONAL ITO EQUATION; SOLITARY WAVES; ROGUE WAVES; RATIONAL CHARACTERISTICS; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATIONS; EXPANSION METHOD;
D O I
10.1515/zna-2017-0436
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painleve expansion method, we derive its non-local symmetry and Backlund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.
引用
收藏
页码:399 / 405
页数:7
相关论文
共 50 条
  • [41] Breather solutions of modified Benjamin–Bona–Mahony equation
    G T Adamashvili
    Chinese Physics B, 2021, (02) : 257 - 263
  • [42] Global strong solutions to nonlocal Benjamin-Bona-Mahony equations with exponential nonlinearities
    Tuan, Nguyen Huy
    Nghia, Bui Dai
    Tuan, Nguyen Anh
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 199
  • [43] The Jacobi elliptic function solutions to a generalized Benjamin-Bona-Mahony equation
    Lai, Shaoyong
    Lv, Xiumei
    Shuai, Mingyou
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (1-2) : 369 - 378
  • [44] Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation
    Malwe Boudoue Hubert
    Nikolai A. Kudryashov
    Mibaile Justin
    Souleymanou Abbagari
    Gambo Betchewe
    Serge Y. Doka
    The European Physical Journal Plus, 133
  • [45] Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation
    Hubert, Malwe Boudoue
    Kudryashov, Nikolai A.
    Justin, Mibaile
    Abbagari, Souleymanou
    Betchewe, Gambo
    Doka, Serge Y.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [46] EXISTENCE AND UNIQUENESS FOR PERIODIC-SOLUTIONS OF BENJAMIN-BONA-MAHONY EQUATION
    MEDEIROS, LA
    MENZALA, GP
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (05) : 792 - 799
  • [47] On the solitary wave solutions of modified Benjamin-Bona-Mahony equation for unidirectional propagation of long waves
    Gupta, A. K.
    Hazarika, J.
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [48] Global Attractors for the Benjamin-Bona-Mahony Equation with Memory
    Dell'Oro, Filippo
    Goubet, Olivier
    Mammeri, Youcef
    Pata, Vittorino
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (03) : 749 - 783
  • [49] On traveling wave solutions with stability and phase plane analysis for the modified Benjamin-Bona-Mahony equation
    Sagib, Md.
    Hossain, Md. Aslam
    Saha, Bijan Krishna
    Khan, Kamruzzaman
    PLOS ONE, 2024, 19 (07):
  • [50] Bifurcation of Exact Solutions for the Space-Fractional Stochastic Modified Benjamin-Bona-Mahony Equation
    Elmandouh, Adel
    Fadhal, Emad
    FRACTAL AND FRACTIONAL, 2022, 6 (12)