Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation

被引:27
|
作者
Yan, Xue-Wei [1 ,2 ]
Tian, Shou-Fu [1 ,2 ]
Dong, Min-Jie [1 ,2 ]
Wang, Xiu-Bin [1 ,2 ]
Zhang, Tian-Tian [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Inst Math Phys, Xuzhou 221116, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Conservation Laws; Interaction Solutions; Jacobi Elliptic Function; Lie Point Symmetry; The Generalised Dispersive mBBM Equation; PERIODIC-WAVE SOLUTIONS; KADOMTSEV-PETVIASHVILI EQUATION; NONLINEAR SCHRODINGER-EQUATION; (2+1)-DIMENSIONAL ITO EQUATION; SOLITARY WAVES; ROGUE WAVES; RATIONAL CHARACTERISTICS; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATIONS; EXPANSION METHOD;
D O I
10.1515/zna-2017-0436
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painleve expansion method, we derive its non-local symmetry and Backlund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.
引用
收藏
页码:399 / 405
页数:7
相关论文
共 50 条
  • [21] OPTIMAL CONTROL OF THE VISCOUS WEAKLY DISPERSIVE BENJAMIN-BONA-MAHONY EQUATION
    Zhang, Lei
    Liu, Bin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (04) : 1185 - 1199
  • [22] Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation
    Estevez, P. G.
    Kuru, S.
    Negro, J.
    Nieto, L. M.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 2031 - 2040
  • [23] New Exact Solutions of the Generalized Benjamin-Bona-Mahony Equation
    Ghanbari, Behzad
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    SYMMETRY-BASEL, 2019, 11 (01):
  • [24] Regularity of attractors for the Benjamin-Bona-Mahony equation
    Wang, BX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (37): : 7635 - 7645
  • [25] On the controllability of the linearized Benjamin-Bona-Mahony equation
    Micu, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 1016 - 1019
  • [26] Attractors for the generalized Benjamin-Bona-Mahony equation
    Çelebi, AO
    Kalantarov, VK
    Polat, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) : 439 - 451
  • [27] Strong attractors for the Benjamin-Bona-Mahony equation
    Wang, BX
    APPLIED MATHEMATICS LETTERS, 1997, 10 (02) : 23 - 28
  • [28] The Benjamin-Bona-Mahony equation with dissipative memory
    Dell'Oro, Filippo
    Mammeri, Youcef
    Pata, Vittorino
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 899 - 910
  • [29] On the controllability of the linearized Benjamin-Bona-Mahony equation
    Micu, S
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 39 (06) : 1677 - 1696
  • [30] On the Benjamin-Bona-Mahony Equation with a Localized Damping
    Rosier, Lionel
    JOURNAL OF MATHEMATICAL STUDY, 2016, 49 (02): : 195 - 204