Anodic Oxidation of Ultra-Thin Ti Layers on ITO Substrates and their Application in Organic Electronic Memory Elements

被引:12
|
作者
Heljo, P. S. [1 ]
Wolff, K. [1 ]
Lahtonen, K. [2 ]
Valden, M. [2 ]
Berger, P. R. [3 ]
Majumdar, H. S. [4 ]
Lupo, D. [1 ]
机构
[1] Tampere Univ Technol, Dept Elect & Commun Engn, Printed & Organ Elect Grp, FIN-33101 Tampere, Finland
[2] Tampere Univ Technol, Optoelect Res Ctr, Surface Sci Lab, FIN-33101 Tampere, Finland
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[4] VTT Tech Res Ctr Finland, Espoo 02150, Finland
基金
芬兰科学院; 美国国家科学基金会;
关键词
Anodic oxidation; Ultra-thin oxide; Defect density analysis; Negative differential resistance; NEGATIVE DIFFERENTIAL RESISTANCE; FILMS; ANODIZATION; FABRICATION; NANOTUBES; COATINGS;
D O I
10.1016/j.electacta.2014.05.157
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, controlled anodic oxidation is reported for ultra-thin (3 nm thick) titanium layers on indium tin oxide (ITO) coated glass substrates. A physical explanation is also provided for the origin of the delamination process of the Ti during the anodic oxidation. The properties of the fabricated layers are studied using electrochemical impedance spectroscopy (EIS) and X-ray Photoelectron Spectroscopy (XPS). In addition, one intriguing application is demonstrated for the anodized layers: their use as an interfacial barrier in organic diodes. Diodes containing an electrochemically fabricated TiO2 barrier layer exhibit clear room temperature negative differential resistance (NDR) and a peak-to-valley current ratio (PVCR) of 3.6. The reference diodes without the TiO2 layer show normal diode characteristics with no observable NDR. The NDR diodes have potential applications as memory elements for large-area electronics. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 50 条
  • [2] Anodic oxidation of ultra-thin Ti layers on ITO substrates and their application in organic electronic memory elements
    Heljo, P.S.
    Wolff, K.
    Lahtonen, K.
    Valden, M.
    Berger, P.R.
    Majumdar, H.S.
    Lupo, D.
    [J]. Electrochimica Acta, 2014, 137 : 91 - 98
  • [3] Fabrication of SOI substrates with ultra-thin Si layers
    Hobart, KD
    Kub, FJ
    Jernigan, GG
    Twigg, ME
    Thompson, PE
    [J]. ELECTRONICS LETTERS, 1998, 34 (12) : 1265 - 1267
  • [4] Ultra-thin flexible ceramic substrates for electronic applications
    [J]. Olenick, J.A., 1600, IMAPS-International Microelectronics and Packaging Society (41):
  • [5] Electronic Characteristics of Ultra-Thin Passivation Layers for Silicon Photovoltaics
    Pain, Sophie L.
    Khorani, Edris
    Niewelt, Tim
    Wratten, Ailish
    Fajardo, Galo J. Paez
    Winfield, Ben P.
    Bonilla, Ruy S.
    Walker, Marc
    Piper, Louis F. J.
    Grant, Nicholas E.
    Murphy, John D.
    [J]. ADVANCED MATERIALS INTERFACES, 2022, 9 (28):
  • [6] Electronic properties of a zinc oxide surface modified by ultra-thin layers of conjugated organic molecules
    Komolov, AS
    Moller, PJ
    Mortensen, J
    Komolov, SA
    Lazneva, EF
    [J]. SURFACE SCIENCE, 2005, 586 (1-3) : 129 - 136
  • [7] Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates
    Kamiko, Masao
    Kim, So-Mang
    Jeong, Young-Seok
    Ha, Jae-Ho
    Koo, Sang-Mo
    Ha, Jae-Geun
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 99 : 320 - 329
  • [8] Flexible ITO-Free Organic Photovoltaics on Ultra-Thin Flexible Glass Substrates with High Efficiency and Improved Stability
    Wang, Xiao
    Jin, Hui
    Nagiri, Ravi C. R.
    Poliquit, Beta Z. L.
    Subbiah, Jegadesan
    Jones, David J.
    Kopidakis, Nikos
    Burn, Paul L.
    Yu, Junsheng
    [J]. SOLAR RRL, 2019, 3 (04)
  • [9] Growth and Oxidation of Vanadium ultra-thin Buffer Layers on Fe(001)
    Picone, A.
    Giannotti, D.
    Finazzi, M.
    Ciccacci, F.
    Brambilla, A.
    [J]. SPINTRONICS IX, 2016, 9931
  • [10] Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors
    Lebioda, Marcin
    Pawlak, Ryszard
    Rymaszewski, Jacek
    [J]. SENSORS, 2021, 21 (14)