Plasmonic trapping potentials for cold atoms

被引:10
|
作者
Mildner, Matthias [1 ,2 ]
Horrer, Andreas [3 ]
Fleischer, Monika [3 ]
Zimmerman, Claus [1 ,2 ]
Slama, Sebastian [1 ,2 ]
机构
[1] Eberhard Karls Univ Tubingen, Phys Inst, LISA, Morgenstelle 14, D-72076 Tubingen, Germany
[2] Eberhard Karls Univ Tubingen, Ctr Collect Quantum Phenomena, LISA, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Eberhard Karls Univ Tubingen, Inst Appl Phys, LISA, Morgenstelle 14, D-72076 Tubingen, Germany
基金
欧盟地平线“2020”;
关键词
surface traps; hybrid quantum systems; ultracold atoms; surface plasmons; SURFACE-PLASMONS; ULTRACOLD ATOMS; LATTICES;
D O I
10.1088/1361-6455/aac5ac
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper reports on conceptual and experimental work towards the realization of plasmonic surface traps for cold atoms. The trapping mechanism is based on the combination of a repulsive and an attractive potential generated by evanescent light waves that are plasmonically enhanced. The strength of enhancement can be locally manipulated via the thickness of a metal nanolayer deposited on top of a dielectric substrate. Thus, in principle the trapping geometry can be predefined by the metal layer design. We present simulations of a plasmonic lattice potential using a gold grating with sinusoidally modulated thickness. Experimentally, a first plasmonic test structure is presented and characterized. Furthermore, the surface potential landscape is detected by reflecting ultracold atom clouds from the test structure revealing the influence of both evanescent waves. A parameter range is identified where stable traps can be expected.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electromagnetic trapping of cold atoms
    Balykin, VI
    Minogin, VG
    Letokhov, VS
    REPORTS ON PROGRESS IN PHYSICS, 2000, 63 (09) : 1429 - 1510
  • [2] TRAPPING COLD ATOMS BY A CARBON NANOTUBE
    Chu, T. A.
    Nga, D. T.
    Thao, T. T.
    Ngo, V. Thanh
    Viet, N. A.
    MODERN PHYSICS LETTERS B, 2011, 25 (12-13): : 979 - 985
  • [3] Magnetic Trapping of Cold Bromine Atoms
    Rennick, C. J.
    Lam, J.
    Doherty, W. G.
    Softley, T. P.
    PHYSICAL REVIEW LETTERS, 2014, 112 (02)
  • [4] Electromagnetic trapping of cold atoms: An overview
    Letokhov, VS
    TRAPPED PARTICLES AND FUNDAMENTAL PHYSICS, 2002, 51 : 11 - 38
  • [5] Subradiance and radiation trapping in cold atoms
    Weiss, Patrizia
    Araujo, Michelle O.
    Kaiser, Robin
    Guerin, William
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [6] Coherent population trapping with cold atoms
    Zanon, T
    Guérandel, S
    De Clercq, E
    Dimarcq, N
    Clairon, A
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM & PDA EXHIBITION JOINTLY WITH 17TH EUROPEAN FREQUENCY AND TIME FORUM, 2003, : 49 - 54
  • [7] Trapping cold atoms by quantum reflection
    Jurisch, Alexander
    Rost, Jan-Michael
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [8] Coherent population trapping on cold atoms
    Zanon, T
    Guérandel, S
    De Clercq, E
    Holleville, D
    Dimarcq, N
    Clairon, A
    JOURNAL DE PHYSIQUE IV, 2004, 119 : 291 - 292
  • [9] Trapping Atoms With Radio Frequency Adiabatic Potentials
    Perrin, Helene
    Garraway, Barry M.
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 66, 2017, 66 : 181 - 262
  • [10] Trapping Cold Ground State Argon Atoms
    Edmunds, P. D.
    Barker, P. F.
    PHYSICAL REVIEW LETTERS, 2014, 113 (18)