Two Commuting Generalized Projection Operators

被引:0
|
作者
Liu, Xiaoji [1 ]
Wang, Qiao [1 ]
机构
[1] Guangxi Univ Nationalities, Coll Math & Comp Sci, Nanning, Peoples R China
关键词
operator; generalized projector; matrix representation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the properties of generalized projection operators and the matrix representation of operator, we discuss the linear combinations of generalized projector operators
引用
收藏
页码:92 / 95
页数:4
相关论文
共 50 条
  • [1] The Generalized Projection Operators and Hypergeneralized Projection Operators
    Wang, Qiao
    Liu, Xiaoji
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 335 - 338
  • [2] Commuting differential operators of rank two
    Ochiai, H
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 243 - 255
  • [3] Commuting difference operators of rank two
    Mauleshova, G. S.
    Mironov, A. E.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (03) : 557 - 559
  • [4] Generalized projection algorithms for nonlineear operators
    Agarwal, Ravi R.
    Cho, Yeol Je
    Qin, Xiaolong
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (11-12) : 1197 - 1215
  • [5] Generalized projection operators in Geometric Algebra
    T. A. Bouma
    [J]. Advances in Applied Clifford Algebras, 2001, 11 (2) : 231 - 238
  • [6] Inverse problems of generalized projection operators
    Kaasalainen, Mikko
    Lamberg, Lars
    [J]. INVERSE PROBLEMS, 2006, 22 (03) : 749 - 769
  • [7] MAPS PRESERVING GENERALIZED PROJECTION OPERATORS
    Benbouziane, Hassane
    Chadli, Kaddour
    EL Kettani, Mustapha ech-cherif
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 717 - 729
  • [8] On the generalized joint eigenvector expansion for commuting normal operators
    Pulemyotov, A
    [J]. CURRENT TRENDS IN OPERATOR THEORY AND ITS APPLICATIONS, 2004, 149 : 517 - 523
  • [10] Two commuting operators associated with a tridiagonal pair
    Bockting-Conrad, Sarah
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 242 - 270