Statistical aspects of linkage analysis in interlaboratory studies

被引:0
|
作者
Rukhin, Andrew L.
Strawderman, William E.
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Natl Inst Stand & Technol, Stat Engn Div, Gaithersburg, MD 20899 USA
[3] Rutgers State Univ, Dept Stat, New Brunswick, NJ 08903 USA
关键词
Behrens-Fisher distribution; common mean problem; completeness; confidence intervals; contrasts; Graybill-Deal estimator; key comparisons; sufficient statistics; unbiasedness; UMVUE; Welch-Satterthwaite's formula;
D O I
10.1016/j.jspi.2005.09.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates statistical issues that arise in interlaboratory studies known as Key Comparisons when one has to link several comparisons to or through existing studies. An approach to the analysis of such a data is proposed using Gaussian distributions with heterogeneous variances. We develop conditions for the set of sufficient statistics to be complete and for the uniqueness of uniformly minimum variance unbiased estimators (UMVUE) of the contrast parametric functions. New procedures are derived for estimating these functions with estimates of their uncertainty. These estimates lead to associated confidence intervals for the laboratories (or studies) contrasts. Several examples demonstrate statistical inference for contrasts based on linkage through the pilot laboratories. Monte Carlo simulation results on performance of approximate confidence intervals are also reported. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:264 / 278
页数:15
相关论文
共 50 条
  • [1] STATISTICAL-ANALYSIS OF INTERLABORATORY STUDIES
    SNEE, RD
    SMITH, PE
    AMERICAN INDUSTRIAL HYGIENE ASSOCIATION JOURNAL, 1972, 33 (02): : 57 - &
  • [2] STATISTICAL-ANALYSIS OF INTERLABORATORY STUDIES
    SNEE, RD
    SMITH, PE
    AMERICAN INDUSTRIAL HYGIENE ASSOCIATION JOURNAL, 1972, 33 (12): : 784 - 790
  • [3] ROBUST STATISTICAL-ANALYSIS OF INTERLABORATORY STUDIES
    ROCKE, DM
    BIOMETRIKA, 1983, 70 (02) : 421 - 431
  • [4] ILS: An R package for statistical analysis in Interlaboratory Studies
    Flores, Miguel
    Fernandez-Casal, Ruben
    Naya, Salvador
    Tarrio-Saavedra, Javier
    Bossano, Roberto
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 181 : 11 - 20
  • [5] Statistical tools for linkage analysis and genetic association studies
    Forabosco, P
    Falchi, M
    Devoto, M
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2005, 5 (05) : 781 - 796
  • [6] Statistical analysis of results of an interlaboratory experiment
    Evequoz, H
    INNOVATION IN MATHEMATICS, 1997, : 137 - 144
  • [7] Statistical analysis of a micromethod in an interlaboratory test
    Berres, M
    Meier, R
    Reber, H
    INTERNATIONAL JOURNAL OF HYGIENE AND ENVIRONMENTAL HEALTH, 2002, 205 (03) : 193 - 204
  • [8] Statistical functional approach for interlaboratory studies with thermal data
    Naya, Salvador
    Tarrio-Saavedra, Javier
    Lopez-Beceiro, Jorge
    Francisco-Fernandez, Mario
    Flores, Miguel
    Artiaga, Ramon
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 118 (02) : 1229 - 1243
  • [9] Statistical functional approach for interlaboratory studies with thermal data
    Salvador Naya
    Javier Tarrío-Saavedra
    Jorge López-Beceiro
    Mario Francisco-Fernández
    Miguel Flores
    Ramón Artiaga
    Journal of Thermal Analysis and Calorimetry, 2014, 118 : 1229 - 1243
  • [10] A STATISTICAL PROCEDURE FOR THE ESTIMATION OF ACCURACY PARAMETERS IN INTERLABORATORY STUDIES
    KRISTIANSEN, S
    STATISTICS IN MEDICINE, 1991, 10 (06) : 843 - 854