PERTURBATION BOUNDS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE IN SOME BANACH SPACES

被引:7
|
作者
Cao, Jianbing [1 ,2 ]
Zhang, Wanqin [3 ]
机构
[1] Henan Normal Univ, Postdoctoral Res Stn Phys, Xinxiang 453007, Henan, Peoples R China
[2] Henan Inst Sci & Technol, Postdoctoral Res Base, Xinxiang 45003, Henan, Peoples R China
[3] Henan Inst Sci & Technol, Dept Math, Xinxiang 453003, Henan, Peoples R China
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2018年 / 9卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
metric generalized inverse; perturbation; metric projection; LINEAR-OPERATORS;
D O I
10.1215/20088752-2017-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X,Y be Banach spaces, and let T, delta T : X -> Y be bounded linear operators. Put T = T + delta T. In this article, utilizing the gap between closed subspaces and the perturbation bounds of metric projections, we first present some error estimates of the upper bound of parallel to T-M-T-M parallel to in L-p (1 < p < +infinity) spaces. Then, by using the concept of strong uniqueness and modulus of convexity, we further investigate the corresponding perturbation bound parallel to T-M - T-M parallel to in uniformly convex Banach spaces.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 50 条
  • [1] Perturbation of the Moore-Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Cao, Jian Bing
    Zhang, Wan Qin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) : 725 - 735
  • [2] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF CLOSED LINEAR OPERATORS IN BANACH SPACES
    Du, Fapeng
    Chen, Jianlong
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 240 - 253
  • [3] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    王紫
    王玉文
    [J]. Acta Mathematica Scientia(English Series), 2017, 37 (06) : 1619 - 1631
  • [4] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    王紫
    王玉文
    [J]. Acta Mathematica Scientia, 2017, (06) : 1619 - 1631
  • [5] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    Wang, Zi
    Wang, Yuwen
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (06) : 1619 - 1631
  • [6] PERTURBATION ANALYSIS OF THE MOORE-PENROSE METRIC GENERALIZED INVERSE WITH APPLICATIONS
    Cao, Jianbing
    Xue, Yifeng
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (03): : 709 - 729
  • [7] Perturbation of the Moore–Penrose metric generalized inverse in reflexive strictly convex Banach spaces
    Jian Bing Cao
    Wan Qin Zhang
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 725 - 735
  • [8] Perturbation of the Moore–Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Jian Bing CAO
    Wan Qin ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2016, (06) : 725 - 735
  • [9] Perturbation of the Moore–Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Jian Bing CAO
    Wan Qin ZHANG
    [J]. ActaMathematicaSinica, 2016, 32 (06) : 725 - 735
  • [10] Perturbation bounds for the Moore-Penrose inverse of operators
    Liu, Xiaoji
    Qin, Yonghui
    Cvetkovic-Ilic, Dragana S.
    [J]. FILOMAT, 2012, 26 (02) : 353 - 362