Relations between Bell's inequality and noncommutativity of operators are discussed via the four operators involved in the Clauser et al inequality. The case of all operators commuting (i.e. the six commutators vanish) and the case of three out of the four operators mutually commuting (i.e. five commutators vanish) is shown to abide by the inequality. In the latter case a novel insight is unravelled. The Bell quantum bound (2 root 2) is obeyed for the case when four commutators vanish. The probabilistic upper limit of the inequality is reviewed and shown to be 4. In any theory based on Hilbert space, the upper limit is 2 root 3.
机构:
UERJ Univ Estado Rio Janeiro, Inst Fis, Dept Fis Teor, Rua Sao Francisco Xavier 524, BR-20550013 Maracana, Rj, BrazilUERJ Univ Estado Rio Janeiro, Inst Fis, Dept Fis Teor, Rua Sao Francisco Xavier 524, BR-20550013 Maracana, Rj, Brazil
Guimaraes, M. S.
Roditi, I.
论文数: 0引用数: 0
h-index: 0
机构:
CBPF Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, BrazilUERJ Univ Estado Rio Janeiro, Inst Fis, Dept Fis Teor, Rua Sao Francisco Xavier 524, BR-20550013 Maracana, Rj, Brazil
Roditi, I.
Sorella, S. P.
论文数: 0引用数: 0
h-index: 0
机构:
UERJ Univ Estado Rio Janeiro, Inst Fis, Dept Fis Teor, Rua Sao Francisco Xavier 524, BR-20550013 Maracana, Rj, BrazilUERJ Univ Estado Rio Janeiro, Inst Fis, Dept Fis Teor, Rua Sao Francisco Xavier 524, BR-20550013 Maracana, Rj, Brazil
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USAArizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
Ferry, David K.
Kish, Laszlo B.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USAArizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA