An integrated and interactive video retrieval framework with hierarchical learning models and semantic clustering strategy

被引:0
|
作者
Zhao, Na [1 ]
Chen, Shu-Ching [1 ]
Shyu, Mei-Ling [2 ]
Rubin, Stuart H. [3 ]
机构
[1] Florida Int Univ, Distributed Multimedia Informat Syst Lab, Sch Comp & Informat Sci, Miami, FL 33199 USA
[2] Univ Miami, Dept Elect & Comp Engn, Coral Gables, FL 33124 USA
[3] Space & Naval Warfare Syst Ctr, SSC, San Diego, CA 92152 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this research, we propose an integrated and interactive framework to manage and retrieve large scale video archives. The video data are modeled by a hierarchical learning mechanism called HMMM (Hierarchical Markov Model Mediator) and indexed by an innovative semantic video database clustering strategy. The cumulated user feedbacks are reused to update the affinity relationships of the video objects as well as their initial state probabilities. Correspondingly, both the high level semantics and user perceptions are employed in the video clustering strategy. The clustered video database is capable of providing appealing multimedia experience to the users because the modeled multimedia database system can learn the user's preferences and interests interactively.
引用
收藏
页码:438 / +
页数:2
相关论文
共 50 条
  • [1] SHIM: Semantic Hierarchical clustering with Interactive Machine learning
    Cao, Fang
    Tu, Yuanwei
    Brown, Eli T.
    [J]. 2021 IEEE WORKSHOP ON MACHINE LEARNING FROM USER INTERACTIONS (MLUI 2021), 2021, : 12 - 20
  • [2] Semantic Learning in Interactive Image Retrieval
    Patil, Pushpa B.
    Kokare, Manesh
    [J]. Communications in Computer and Information Science, 2011, 205 M4D : 118 - 127
  • [3] Semantic Learning in Interactive Image Retrieval
    Patil, Pushpa B.
    Kokare, Manesh
    [J]. ADVANCES IN DIGITAL IMAGE PROCESSING AND INFORMATION TECHNOLOGY, 2011, 205 : 118 - +
  • [4] The Case Retrieval Strategy Based on Hierarchical Clustering
    Ma, Shixia
    Li, Jibiao
    Liu, Dan
    [J]. PROCEEDINGS OF THE 2009 SECOND PACIFIC-ASIA CONFERENCE ON WEB MINING AND WEB-BASED APPLICATION, 2009, : 81 - 85
  • [5] A probabilistic framework for semantic indexing and retrieval in video
    Naphade, MR
    Huang, TS
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, PROCEEDINGS VOLS I-III, 2000, : 475 - 478
  • [6] A Human-Centered Multiple Instance Learning Framework for Semantic Video Retrieval
    Chen, Xin
    Zhang, Chengcui
    Chen, Shu-Ching
    Rubin, Stuart
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2009, 39 (02): : 228 - 233
  • [7] Semantic kernel learning for interactive image retrieval
    Gosselin, PH
    Cord, M
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 185 - 188
  • [8] Interactive Video Retrieval in the Age of Deep Learning
    Lokoc, Jakub
    Schoeffmann, Klaus
    Bailer, Werner
    Rossetto, Luca
    Gurrin, Cathal
    [J]. ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 2 - 4
  • [9] LDA-based retrieval framework for semantic news video retrieval
    Cao, Juan
    Li, Jintao
    Zhang, Yongdong
    Tang, Sheng
    [J]. ICSC 2007: INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, PROCEEDINGS, 2007, : 155 - +
  • [10] A Novel Framework for Semantic-based Video Retrieval
    Nan, Xiaoming
    Zhao, Zhicheng
    Cai, Anni
    Xie, Xiaohui
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 415 - +