The stability of a rising droplet: an inertialess non-modal growth mechanism

被引:7
|
作者
Gallino, Giacomo [1 ]
Zhu, Lailai [1 ]
Gallaire, Francois [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Fluid Mech & Instabil, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
boundary integral methods; drops; nonlinear instability; LINEAR-STABILITY; REYNOLDS-NUMBER; FLUID; FLOWS;
D O I
10.1017/jfm.2015.650
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Prior modal stability analysis (Kojima et al., Phys. Fluids, vol. 27, 1984, pp. 19-32) predicted that a rising or sedimenting droplet in a viscous fluid is stable in the presence of surface tension no matter how small, in contrast to experimental and numerical results. By performing a non-modal stability analysis, we demonstrate the potential for transient growth of the interfacial energy of a rising droplet in the limit of inertialess Stokes equations. The predicted critical capillary numbers for transient growth agree well with those for unstable shape evolution of droplets found in the direct numerical simulations of Koh & Leal (Phys. Fluids, vol. 1, 1989, pp. 1309-1313). Boundary integral simulations are used to delineate the critical amplitude of the most destabilizing perturbations. The critical amplitude is negatively correlated with the linear optimal energy growth, implying that the transient growth is responsible for reducing the necessary perturbation amplitude required to escape the basin of attraction of the spherical solution.
引用
收藏
页码:R2 / 1R211
页数:11
相关论文
共 50 条
  • [1] Modal growth and non-modal growth in a stretched shear layer
    Le Dizès, S
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2003, 22 (05) : 411 - 430
  • [2] Investigation of the transient growth in plane jet by non-modal stability analysis
    Gohardehi, Siavash
    Afshin, Hossein
    Farhanieh, Bijan
    [J]. FLUID DYNAMICS RESEARCH, 2019, 51 (05)
  • [3] Non-modal stability analysis and transient growth in a magnetized Vlasov plasma
    Ratushnaya, V.
    Samtaney, R.
    [J]. EPL, 2014, 108 (05)
  • [4] Non-modal stability of round viscous jets
    Boronin, S. A.
    Healey, J. J.
    Sazhin, S. S.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 716 : 96 - 119
  • [5] Non-modal stability in sliding Couette flow
    Liu, R.
    Liu, Q. S.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 710 : 505 - 544
  • [6] Modal and non-modal stability of particle-laden channel flow
    Klinkenberg, Joy
    de Lange, H. C.
    Brandt, Luca
    [J]. PHYSICS OF FLUIDS, 2011, 23 (06)
  • [7] Non-modal stability of Jeffery-Hamel flow
    Jotkar, Mamta R.
    Govindarajan, Rama
    [J]. PHYSICS OF FLUIDS, 2017, 29 (06)
  • [8] Modal and non-modal stability of dusty-gas boundary layer flow
    S. A. Boronin
    A. N. Osiptsov
    [J]. Fluid Dynamics, 2014, 49 : 770 - 782
  • [9] MODAL AND NON-MODAL BAROCLINIC WAVES
    FARRELL, B
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1984, 41 (04) : 668 - 673
  • [10] Modal and non-modal stability of boundary layers forced by spanwise wall oscillations
    Hack, M. J. Philipp
    Zaki, Tamer A.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 778 : 389 - 427