The Spectral Mapping Property of Delay Semigroups

被引:1
|
作者
Batkai, Andras [1 ]
Eisner, Tanja [2 ]
Latushkin, Yuri [3 ]
机构
[1] ELTE TTK, Dept Appl Anal & Computat Math, H-1117 Budapest, Hungary
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
C-0-semigroups; spectral mapping theorem; delay equations;
D O I
10.1007/s11785-008-0052-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We offer a new way of proving spectral mapping properties of delay semigroups in L-p-history spaces with finitely many rationally depending delays based on an explicit construction of approximate eigenvectors. This allows us to provide proper generalizations of the existing spectral mapping theorems.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [1] The Spectral Mapping Property of Delay Semigroups
    András Bátkai
    Tanja Eisner
    Yuri Latushkin
    Complex Analysis and Operator Theory, 2008, 2 : 273 - 283
  • [2] Spectral mapping theorem for semigroups with SVEP or weak Bishop's property
    Boua, Hamid
    El Wahbi, Bouazza
    Khachane, Haddou
    Seddoug, Belkassem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 591 - 600
  • [3] Spectral mapping theorem for semigroups with SVEP or weak Bishop’s property
    Hamid Boua
    Bouazza El Wahbi
    Haddou Khachane
    Belkassem Seddoug
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 591 - 600
  • [4] SPECTRAL MAPPING THEOREMS FOR SEMIGROUPS OF OPERATORS
    NAGY, B
    ACTA SCIENTIARUM MATHEMATICARUM, 1976, 38 (3-4): : 343 - 351
  • [5] THE SPECTRAL LOCALIZATION PROPERTY FOR DIAGONAL OPERATORS AND SEMIGROUPS
    Nikolski, N. K.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2010, 21 (06) : 995 - 1013
  • [6] SPECTRAL MAPPING-THEOREM FOR INTEGRATED SEMIGROUPS
    DAY, CR
    SEMIGROUP FORUM, 1993, 47 (03) : 359 - 372
  • [7] THE SPECTRAL MAPPING-THEOREM FOR INTEGRATED SEMIGROUPS
    GREINER, G
    MULLER, M
    SEMIGROUP FORUM, 1993, 47 (01) : 115 - 122
  • [8] SPECTRAL PROPERTY OF TIME-DELAY
    TSANG, TY
    OSBORN, TA
    NUCLEAR PHYSICS A, 1975, 247 (01) : 43 - 50
  • [9] On the spectral mapping theorem for perturbed strongly continuous semigroups
    S. Brendle
    R. Nagel
    J. Poland
    Archiv der Mathematik, 2000, 74 : 365 - 378
  • [10] On the spectral mapping theorem for perturbed strongly continuous semigroups
    Brendle, S
    Nagel, R
    Poland, J
    ARCHIV DER MATHEMATIK, 2000, 74 (05) : 365 - 378