On the evolution and relative merits of hard X-ray phase-contrast imaging methods

被引:110
|
作者
Wilkins, S. W. [1 ]
Nesterets, Ya. I. [1 ]
Gureyev, T. E. [1 ]
Mayo, S. C. [1 ]
Pogany, A. [1 ]
Stevenson, A. W. [1 ]
机构
[1] CSIRO Mat Sci & Engn, Clayton, Vic 3169, Australia
关键词
phase contrast; imaging; X-ray imaging; SIGNAL-TO-NOISE; SYNCHROTRON-RADIATION; INTERFEROMETER; RESOLUTION; RETRIEVAL; IMAGES; TOMOGRAPHY; ABSORPTION; OBJECT; WAVE;
D O I
10.1098/rsta.2013.0021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This review provides a brief overview, albeit from a somewhat personal perspective, of the evolution and key features of various hard X-ray phase-contrast imaging (PCI) methods of current interest in connection with translation to a wide range of imaging applications. Although such methods have already found wide-ranging applications using synchrotron sources, application to dynamic studies in a laboratory/clinical context, for example for in vivo imaging, has been slow due to the current limitations in the brilliance of compact laboratory sources and the availability of suitable high-performance X-ray detectors. On the theoretical side, promising new PCI methods are evolving which can record both components of the phase gradient in a single exposure and which can accept a relatively large spectral bandpass. In order to help to identify the most promising paths forward, we make some suggestions as to how the various PCI methods might be compared for performance with a particular view to identifying those which are the most efficient, given the fact that source performance is currently a key limiting factor on the improved performance and applicability of PCI systems, especially in the context of dynamic sample studies. The rapid ongoing development of both suitable improved sources and detectors gives strong encouragement to the view that hard X-ray PCI methods are poised for improved performance and an even wider range of applications in the near future.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hard X-ray phase-contrast imaging
    Gao, D.C.
    Pogany, A.
    Stevenson, A.W.
    Gureyev, T.
    Wilkins, S.W.
    Mai, Zhen-Hong
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (12): : 2367 - 2368
  • [2] Hard X-ray phase-contrast imaging
    Gao, DC
    Pogany, A
    Stevenson, AW
    Gureyev, T
    Wilkins, SW
    Mai, ZH
    ACTA PHYSICA SINICA, 2000, 49 (12) : 2357 - 2368
  • [3] Quantitative methods in phase-contrast x-ray imaging
    Gureyev, TE
    Stevenson, AW
    Paganin, D
    Mayo, SC
    Pogany, A
    Gao, D
    Wilkins, SW
    JOURNAL OF DIGITAL IMAGING, 2000, 13 (02) : 121 - 126
  • [4] Quantitative methods in phase-contrast x-ray imaging
    T. E. Gureyev
    A. W. Stevenson
    D. Paganin
    S. C. Mayo
    A. Pogany
    D. Gao
    S. W. Wilkins
    Journal of Digital Imaging, 2000, 13 : 121 - 126
  • [5] Hard X-ray phase-contrast imaging with a microfocus source
    Stevenson, AW
    Gao, D
    Gureyev, TE
    Pogany, A
    Wilkins, SW
    NONDESTRUCTIVE CHARACTERIZATION OF MATERIALS IX, 1999, 497 : 641 - 648
  • [6] X-ray phase-contrast methods
    V. V. Lider
    M. V. Kovalchuk
    Crystallography Reports, 2013, 58 : 769 - 787
  • [7] X-ray phase-contrast methods
    Lider, V. V.
    Kovalchuk, M. V.
    CRYSTALLOGRAPHY REPORTS, 2013, 58 (06) : 769 - 787
  • [8] X-ray phase-contrast imaging
    Endrizzi, Marco
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 878 : 88 - 98
  • [9] HARD X-RAY PHASE-CONTRAST IMAGING WITH A MICROFOCUS SOURCE.
    Stevenson, A. W.
    Gao, D.
    Gureyev, T. E.
    Pogany, A.
    Wilkins, S. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 226 - 226
  • [10] On the development of hard X-ray phase-contrast imaging at CSIRO in Clayton
    Wilkins, Stephen
    Australian and New Zealand Physicist, 1998, 35 (06): : 235 - 240