Numerical Simulation of electronic properties in quantum dot heterostructures

被引:0
|
作者
Vlahovic, B [1 ]
Filikhin, I [1 ]
Suslov, VM [1 ]
Wang, K [1 ]
机构
[1] N Carolina Cent Univ, Dept Phys, Durham, NC 27707 USA
关键词
numerical modeling; quantum dots; residual stress; electronic state;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A confined structure in all three dimensions leads to carrier's discrete energy level spectrum in quantum dots. This property has profound impact on many applications, such as single electron transistors, quantum dot laser, high efficiency photovoltaic cells, information storage etc. A finite element method is utilized to model the residual stress distribution. The effect of residual stress on the electronic and optical properties is studied. This is accomplished by incorporating both the valence subbands and the strain-induced potential field into Schr dinger equation. A finite-difference method was applied to solve the equation system. The density of states is obtained from the spectrum of the eigenstates. The discrete eigenstate distributions for both with and without residual stress are compared. The effect of the quantum dot size and geometry to the energy state distribution is discussed.
引用
收藏
页码:130 / 132
页数:3
相关论文
共 50 条
  • [1] Numerical computation of electronic properties of semiconductor heterostructures for quantum device applications
    Lazzouni, M.E., 1600, MCB Univ Press Ltd, Bradford, United Kingdom (14): : 2 - 3
  • [2] Numerical computation of electronic properties of semiconductor heterostructures for quantum device applications
    Lazzouni, ME
    Sham, LJ
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1995, 14 (2-3) : 129 - 137
  • [3] Simulation of electronic and optical properties of ZnO/MgZnO quantum dot laser
    Taleb, S.
    Soudini, B.
    Lagraa, I.
    Abid, H.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2019, 21 (3-4): : 185 - 193
  • [4] Quantum Dot Heterostructures
    J.M. Rorison
    Optical and Quantum Electronics, 2000, 32 (1) : 115 - 115
  • [5] Quantum dot heterostructures: fabrication, properties, lasers (Review)
    Ledentsov, NN
    Ustinov, VM
    Shchukin, VA
    Kop'ev, PS
    Alferov, ZI
    Bimberg, D
    SEMICONDUCTORS, 1998, 32 (04) : 343 - 365
  • [6] Quantum dot heterostructures: Fabrication, properties, lasers (Review)
    N. N. Ledentsov
    V. M. Ustinov
    V. A. Shchukin
    P. S. Kop’ev
    Zh. I. Alferov
    D. Bimberg
    Semiconductors, 1998, 32 : 343 - 365
  • [7] Numerical simulation of electronic properties of coupled quantum dots on wetting layers
    Betcke, M. M.
    Voss, H.
    NANOTECHNOLOGY, 2008, 19 (16)
  • [8] Electronic properties of aperiodic quantum dot chains
    Korotaev, P. Yu
    Vekilov, Yu Kh
    Kaputkina, N. E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (7-8): : 1580 - 1584
  • [9] Electronic properties of quantum-dot molecules
    Jaskólski, W
    Zielinski, M
    Bryant, GW
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 40 - 41
  • [10] Structural and electronic properties of quantum dot surfaces
    Galli, Giulia
    Puzder, Aaron
    Williamson, Andrew J.
    Grossman, Jeffrey C.
    Pizzagalli, Laurent
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 255 - 258