EXTREME STATES, OPERATOR SPACES AND TERNARY RINGS OF OPERATORS

被引:0
|
作者
Vijayarajan, A. K. [1 ]
机构
[1] Kerala Sch Math, Kozhikode 673, India
来源
3C TIC | 2022年 / 11卷 / 02期
关键词
keyword; 1; Keyword; 2; MATRIX STATES;
D O I
10.17993/3ctic.2022.112.124-134
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this survey article on extreme states of operator spaces in C inverted exclamation -algebras and related ternary ring of operators an extension result for rectangular operator extreme states on operator spaces in ternary rings of operators is discussed. We also observe that in the spacial case of operator spaces in rectangular matrix spaces, rectangular extreme states are conjugates of inclusion or identity maps implemented by isometries or unitaries. A characterization result for operator spaces of matrices for which the inclusion map is an extreme state is deduced using the above mentioned results.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 50 条
  • [1] Extreme states on operator spaces in ternary rings of operators
    Arunkumar, C. S.
    Shabna, A. M.
    Syamkrishnan, M. S.
    Vijayarajan, A. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [2] Extreme states on operator spaces in ternary rings of operators
    C S Arunkumar
    A M Shabna
    M S Syamkrishnan
    A K Vijayarajan
    Proceedings - Mathematical Sciences, 2021, 131
  • [3] Extreme states and boundary representations of operator spaces in ternary rings of operators
    Shabna, A. M.
    Vijayarajan, A. K.
    Arunkumar, C. S.
    Syamkrishnan, M. S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (05)
  • [4] Ternary rings of unbounded operators
    Beniwal, Surbhi
    Kumar, Ajay
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (01)
  • [5] A CHARACTERIZATION OF TERNARY RINGS OF OPERATORS
    ZETTL, H
    ADVANCES IN MATHEMATICS, 1983, 48 (02) : 117 - 143
  • [6] DERIVATIONS ON TERNARY RINGS OF OPERATORS
    Pluta, Robert
    Russo, Bernard
    OPERATORS AND MATRICES, 2018, 12 (02): : 393 - 406
  • [7] Ternary rings of unbounded operators
    Surbhi Beniwal
    Ajay Kumar
    Banach Journal of Mathematical Analysis, 2023, 17
  • [8] Rings of operators on vector spaces
    Arnold, BH
    ANNALS OF MATHEMATICS, 1944, 45 : 24 - 49
  • [9] SPACES OF ORDERINGS AND WITT RINGS OF PLANAR TERNARY RINGS
    KALHOFF, F
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 58 (02) : 169 - 180
  • [10] On Extreme Points of Sets in Operator Spaces and State Spaces
    Amosov, G. G.
    Bikchentaev, A. M.
    Sakbaev, V. Zh.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 324 (01) : 4 - 17