The S′-convolution with singular kernels in the Euclidean case and the product domain case

被引:3
|
作者
Alvarez, J [1 ]
Guzmán-Partida, M
机构
[1] New Mexico State Univ, Dept Math, Las Cruces, NM 88003 USA
[2] Univ Sonora, Dept Matemat, Hermosillo 83000, Sonora, Mexico
关键词
S '-convolution; weighted spaces of distributions; singular convolution kernels;
D O I
10.1016/S0022-247X(02)00078-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize those tempered distributions which are S'-convolvable with a given class of singular convolution kernels. We study both, the Euclidean case and the product domain case. In the Euclidean case, we consider a class of kernels that includes Riesz kernels, Calderon-Zygmund singular convolution kernels, finite part distributions defined by hypersingular convolution kernels, and Hormander multipliers. In the product domain case, we consider a class of singular kernels introduced by Fefferman and Stein as a generalization of the n-dimensional Hilbert kernel. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:405 / 434
页数:30
相关论文
共 50 条