In this paper, we consider a logarithmic population model with piecewise constant arguments. First, we study the uniqueness and existence range of the equilibrium point of the model. After that, by using the linearized stability theorem, the semicycle property and a suitable Lyapunov function, some sufficient conditions are obtained for the local and global asymptotic stability of the equilibrium point and the damped oscillation of positive solutions of the model. Finally, some examples with computer simulations are given to illustrate the main results in this paper.
机构:
Nevsehir Haci Bektas Veli Univ, Dept Math, Fac Sci & Art, TR-50300 Nevsehir, TurkeyNevsehir Haci Bektas Veli Univ, Dept Math, Fac Sci & Art, TR-50300 Nevsehir, Turkey
Kartal, S.
Gurcan, F.
论文数: 0引用数: 0
h-index: 0
机构:
Int Univ Sarajevo, Fac Engn & Nat Sci, Sarajevo, Bosnia & Herceg
Erciyes Univ, Fac Sci, Dept Math, TR-38039 Kayseri, TurkeyNevsehir Haci Bektas Veli Univ, Dept Math, Fac Sci & Art, TR-50300 Nevsehir, Turkey
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China