Atmospheric-Pressure Plasma Reduction of Metal Cation-Containing Polymer Films to Produce Electrically Conductive Nanocomposites by an Electrodiffusion Mechanism

被引:16
|
作者
Ghosh, S. [1 ]
Ostrowski, E. [1 ]
Yang, R. [2 ]
Debnath, D. [3 ]
Feng, P. X. -L. [2 ]
Zorman, C. A. [2 ]
Sankaran, R. M. [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem & Biomol Engn, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
[3] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
Microplasma; Metal chelation; Electrodiffusion; Metal reduction; FABRICATION;
D O I
10.1007/s11090-015-9665-2
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We describe an atmospheric-pressure plasma process for the reduction of metal cation-containing polymer films to form electrically conductive patterns. Thin films of poly(acrylic) acid (PAA) containing silver ions (Ag+) were prepared by mixing the polymer with silver nitrate (AgNO3) in solution to produce a cross-linked precipitate, homogenizing, and depositing onto a substrate by doctor's blade. Exposing the Ag-PAA films to a scanning microplasma resulted in reduction of the bulk dispersed Ag+ in a desired pattern at the film surface. The processed films were characterized by scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and current-voltage measurements. The resistances of the patterned features were found to depend on the thickness of the films, the microplasma scan rate, residual solvent in the film, and electric field created between the microplasma and the substrate. Together these results show that the formation of conductive features occurs via an electrodiffusion process where Ag+ diffuses from the film bulk to the surface to be reduced by the microplasma.
引用
收藏
页码:295 / 307
页数:13
相关论文
共 15 条
  • [1] Atmospheric-Pressure Plasma Reduction of Metal Cation-Containing Polymer Films to Produce Electrically Conductive Nanocomposites by an Electrodiffusion Mechanism
    S. Ghosh
    E. Ostrowski
    R. Yang
    D. Debnath
    P. X.-L. Feng
    C. A. Zorman
    R. M. Sankaran
    Plasma Chemistry and Plasma Processing, 2016, 36 : 295 - 307
  • [2] DEPOSITION OF POLYMER FILMS ON ALUMINIUM SURFACE USING ATMOSPHERIC-PRESSURE PLASMA
    Bonova, Lucia
    Zahoranova, Anna
    Kovacik, Dusan
    Cernak, Mirko
    CHEMICKE LISTY, 2012, 106 : S1431 - S1434
  • [3] Feasibility of Atmospheric-Pressure CO Cold Plasma for Reduction of Supported Metal Ions
    Lanbo Di
    Xiuling Zhang
    Byungjin Lee
    Pan Lu
    Wha-Seung Ahn
    Dong-Wha Park
    Plasma Chemistry and Plasma Processing, 2017, 37 : 1535 - 1549
  • [4] Feasibility of Atmospheric-Pressure CO Cold Plasma for Reduction of Supported Metal Ions
    Di, Lanbo
    Zhang, Xiuling
    Lee, Byungjin
    Lu, Pan
    Ahn, Wha-Seung
    Park, Dong-Wha
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2017, 37 (06) : 1535 - 1549
  • [5] Dielectric Performance of Polymer Nanocomposites Synthesized by Atmospheric-pressure Plasma-treated Silica Nanoparticles
    Yan, W.
    Phung, B. T.
    Han, Z. J.
    Ostrikov, K.
    NANOTECHNOLOGY 2012, VOL 1: ADVANCED MATERIALS, CNTS, PARTICLES, FILMS AND COMPOSITES, 2012, : 539 - 542
  • [6] Room-temperature, atmospheric-pressure microsputtering of dense, electrically conductive, sub-100 nm gold films
    Kornbluth, Y. S.
    Mathews, R. H.
    Parameswaran, L.
    Racz, L. M.
    Velasquez-Garcia, L. F.
    NANOTECHNOLOGY, 2019, 30 (28)
  • [7] Plating technology for fluorocarbon polymer films using atmospheric-pressure nonthermal plasma graft polymerization
    Okubo, Masaaki
    Tahara, Mitsuru
    Kuroki, Tomoyuki
    Hibimo, Toshitomo
    Saeki, Noboru
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2008, 21 (02) : 219 - 224
  • [8] The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge
    Sawada, Y
    Tamaru, H
    Kogoma, M
    Kawase, M
    Hashimoto, K
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (10) : 2539 - 2544
  • [9] Real time characterization of polymer surface modifications by an atmospheric-pressure plasma jet: Electrically coupled versus remote mode
    Knoll, A. J.
    Luan, P.
    Bartis, E. A. J.
    Hart, C.
    Raitses, Y.
    Oehrlein, G. S.
    APPLIED PHYSICS LETTERS, 2014, 105 (17)
  • [10] Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma
    Baba, Kamal
    Bulou, Simon
    Choquet, Patrick
    Boscher, Nicolas D.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) : 13733 - 13741