ON PRODUCT OF DIFFERENCE SETS FOR SETS OF POSITIVE DENSITY

被引:5
|
作者
Fish, Alexander [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Difference sets; sum-product estimates; PATTERNS;
D O I
10.1090/proc/14078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that given two sets E-1, E-2 subset of Z of positive density, there exists k >= 1 which is bounded by a number depending only on the densities of E-1 and E-2 such that kZ subset of (E-1 - E-1) subset of ( E-2 - E-2). As a corollary of the main theorem we deduce that if alpha, beta > 0, then there exist N-0 and d(0) which depend only on alpha and beta such that for every N >= N-0 and E-1, E-2 subset of Z(N) with vertical bar E-1 vertical bar >= alpha N, vertical bar E-2 vertical bar >= beta N there exists d <= d(0) a divisor of N satisfying dZ(N) subset of (E-1 - E-1) center dot (E-2 - E-2).
引用
收藏
页码:3449 / 3453
页数:5
相关论文
共 50 条
  • [1] Density sets of sets of positive integers
    Grekos, Georges
    Misik, Ladislav
    Toth, Janos T.
    JOURNAL OF NUMBER THEORY, 2010, 130 (06) : 1399 - 1407
  • [2] Product of Simplices and sets of positive upper density in Rd
    Lyall, Neil
    Magyar, Akos
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 165 (01) : 25 - 51
  • [3] Tensor product of difference sets
    Hu, Jianhua
    Yu, Zhijian
    Xie, Suzhen
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1185 - 1189
  • [4] DIRECT PRODUCT DIFFERENCE SETS
    GANLEY, MJ
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 23 (03) : 321 - 332
  • [5] On the density of sumsets and product sets
    Hegyvari, Norbert
    Hennecart, Francois
    Pach, Peter Pal
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 1 - 16
  • [6] PRODUCT OF DIFFERENCE SETS OF THE SET OF PRIMES
    Goswami, Sayan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 5081 - 5086
  • [7] Projecting Difference Sets on the Positive Orthant
    Holzman, Ron
    Lev, Vsevolod F.
    Pinchasi, Rom
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (05): : 681 - 688
  • [8] A note on the natural density of product sets
    Bettin, Sandro
    Koukoulopoulos, Dimitris
    Sanna, Carlo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (05) : 1407 - 1413
  • [9] SOME PRODUCT CONSTRUCTIONS FROM DIFFERENCE SETS
    GRAY, K
    ARS COMBINATORIA, 1987, 23 : 143 - 149
  • [10] A new product construction for partial difference sets
    John Polhill
    James A. Davis
    Ken Smith
    Designs, Codes and Cryptography, 2013, 68 : 155 - 161