A novel numerical scheme for a time fractional Black-Scholes equation

被引:10
|
作者
She, Mianfu [1 ,2 ]
Li, Lili [1 ]
Tang, Renxuan [1 ]
Li, Dongfang [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional Black– Scholes model; Chebyshev-Galerkin spectral method; Change of variable; Modified L1 scheme; DOUBLE-BARRIER OPTIONS; DIFFERENCE SCHEME; SPECTRAL METHOD; APPROXIMATION; MODEL;
D O I
10.1007/s12190-020-01467-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black-Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.
引用
下载
收藏
页码:853 / 870
页数:18
相关论文
共 50 条
  • [1] On the numerical solution of time fractional Black-Scholes equation
    Sarboland, M.
    Aminataei, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (09) : 1736 - 1753
  • [2] A novel numerical scheme for a time fractional Black–Scholes equation
    Mianfu She
    Lili Li
    Renxuan Tang
    Dongfang Li
    Journal of Applied Mathematics and Computing, 2021, 66 : 853 - 870
  • [3] Numerical approximation of a time-fractional Black-Scholes equation
    Cen, Zhongdi
    Huang, Jian
    Xu, Aimin
    Le, Anbo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2874 - 2887
  • [4] Numerical solution of time-fractional Black-Scholes equation
    Koleva, Miglena N.
    Vulkov, Lubin G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (04): : 1699 - 1715
  • [5] A robust numerical solution to a time-fractional Black-Scholes equation
    Nuugulu, S. M.
    Gideon, F.
    Patidar, K. C.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [6] NUMERICAL APPROXIMATION OF BLACK-SCHOLES EQUATION
    Dura, Gina
    Mosneagu, Ana-Maria
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 39 - 64
  • [7] A novel numerical scheme for time-fractional Black-Scholes PDE governing European options in mathematical finance
    Kaur, Jaspreet
    Natesan, Srinivasan
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1519 - 1549
  • [8] A novel numerical scheme for time-fractional Black-Scholes PDE governing European options in mathematical finance
    Jaspreet Kaur
    Srinivasan Natesan
    Numerical Algorithms, 2023, 94 : 1519 - 1549
  • [9] A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics
    Nuugulu, Samuel M.
    Gideon, Frednard
    Patidar, Kailash C.
    CHAOS SOLITONS & FRACTALS, 2021, 145 (145)
  • [10] The Stability and Convergence of The Numerical Computation for The Temporal Fractional Black-Scholes Equation
    Mesgarani, H.
    Bakhshandeh, M.
    Aghdam, Y. Esmaeelzade
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15