Silicon Photonics for Machine Learning: Training and Inference

被引:0
|
作者
Shastri, B. J. [1 ,2 ]
Filipovich, M. J. [1 ]
Guo, Z. [1 ]
Prucnal, P. R. [2 ]
Huang, C. [2 ]
Tait, A. N. [1 ]
Shekhar, S. [3 ]
Sorger, V. J. [4 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[4] George Washington Univ, Dept Elect & Comp Engn, V6T 1Z4, Washington, DC USA
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonics neural networks employ optical device physics for neuron models, and optical interconnects for distributed, parallel, and analog processing for high-bandwidth, low-latency, and low-switching energy applications in AI and neuromorphic computing. We discuss silicon photonics for machine learning acceleration for inference and in situ training. (c) 2022 The Author(s)
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Machine Learning Application For Silicon Photonics Transceiver Testing
    Kim, Woosung
    Seng, Yeoh Hoe
    Chang, Yi-Shing
    Mei, Suohai
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XII, 2018, 10751
  • [2] Why Data Science and Machine Learning Need Silicon Photonics
    Klenk, Benjamin
    Dennison, Larry
    2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2020,
  • [3] Machine learning pattern recognition in integrated silicon photonics design
    Xu, Dan-Xia
    Melati, Daniele
    Dezfouli, Mohsen Kamandar
    Schmid, Jens H.
    Cheben, Pavel
    Cheriton, Ross
    Janz, Siegfried
    Grinberg, Yuri
    Niegemann, Jens
    Pond, James
    Reid, Adam
    2020 PHOTONICS NORTH (PN), 2020,
  • [4] Machine Learning With Neuromorphic Photonics
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Tait, Alexander N.
    Nahmias, Mitchell A.
    Miller, Heidi B.
    Shastri, Bhavin J.
    Prucnal, Paul R.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (05) : 1515 - 1534
  • [5] Machine Learning Accelerators in 2.5D Chiplet Platforms with Silicon Photonics
    Sunny, Febin
    Taheri, Ebadollah
    Nikdast, Mahdi
    Pasricha, Sudeep
    2023 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2023,
  • [6] Advancing Silicon Photonics through Machine Learning: From Device Design to Fabrication
    Xu, Dan-Xia
    Gostimirovic, Dusan
    Grinberg, Yuri
    Liboiron-Ladouceur, Odile
    2024 IEEE 24TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO 2024, 2024, : 460 - 463
  • [7] Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference
    Moralis-Pegios, Miltiadis
    Mourgias-Alexandris, George
    Tsakyridis, Apostolos
    Giamougiannis, George
    Totovic, Angelina
    Dabos, George
    Passalis, Nikolaos
    Kirtas, Manos
    Rutirawut, T.
    Gardes, F. Y.
    Tefas, Anastasios
    Pleros, Nikos
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) : 3243 - 3254
  • [8] A Survey on Silicon Photonics for Deep Learning
    Sunny, Febin P.
    Taheri, Ebadollah
    Nikdast, Mahdi
    Pasricha, Sudeep
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2021, 17 (04)
  • [9] In situ training with silicon photonics neural networks
    Shastri, Bhavin J.
    Filipovich, Matthew J.
    Guo, Zhimu
    Prucnal, Paul R.
    Shekhar, Sudip
    Sorger, Volker J.
    2022 PHOTONICS NORTH (PN), 2022,
  • [10] Silicon Photonics Codesign for Deep Learning
    Cheng, Qixiang
    Kwon, Jihye
    Glick, Madeleine
    Bahadori, Meisam
    Carloni, Luca P.
    Bergman, Keren
    PROCEEDINGS OF THE IEEE, 2020, 108 (08) : 1261 - 1282