Convergence analysis of Anderson-type acceleration of Richardson's iteration

被引:12
|
作者
Pasini, Massimiliano Lupo [1 ,2 ,3 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37830 USA
[3] 1 Bethel Valley Rd,PO 2008,MS6008, Oak Ridge, TN 37830 USA
基金
美国能源部;
关键词
Anderson acceleration; fixed-point scheme; projection method; Richardson iteration; KRYLOV METHODS;
D O I
10.1002/nla.2241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Anderson extrapolation to accelerate the (stationary) Richardson iterative method for sparse linear systems. Using an Anderson mixing at periodic intervals, we assess how this benefits convergence to a prescribed accuracy. The method, named alternating Anderson-Richardson, has appealing properties for high-performance computing, such as the potential to reduce communication and storage in comparison to more conventional linear solvers. We establish sufficient conditions for convergence, and we evaluate the performance of this technique in combination with various preconditioners through numerical examples. Furthermore, we propose an augmented version of this technique.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] CONVERGENCE ANALYSIS FOR ANDERSON ACCELERATION
    Toth, Alex
    Kelley, C. T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 805 - 819
  • [2] Shanks and Anderson-type acceleration techniques for systems of nonlinear equations
    Brezinski, Claude
    Cipolla, Stefano
    Redivo-Zaglia, Michela
    Saad, Yousef
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3058 - 3093
  • [3] Accelerating the HS-type Richardson Iteration Method with Anderson Mixing
    Zhi Zhi Li
    Huai Zhang
    Le Ou-Yang
    Acta Mathematica Sinica, English Series, 2022, 38 : 2069 - 2089
  • [4] Accelerating the HS-type Richardson Iteration Method with Anderson Mixing
    Zhi Zhi LI
    Huai ZHANG
    Le OU-YANG
    Acta Mathematica Sinica,English Series, 2022, (11) : 2069 - 2089
  • [5] Accelerating the HS-type Richardson Iteration Method with Anderson Mixing
    Li, Zhi Zhi
    Zhang, Huai
    Ou-Yang, Le
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (11) : 2069 - 2089
  • [6] ANDERSON-TYPE AMMONIUM HEXAMOLYBDOTUNGSTONICKELATES
    PORTA, P
    MINELLI, G
    MORETTI, G
    PETTITI, I
    BOTTO, LI
    THOMAS, HJ
    JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (04) : 541 - 545
  • [7] Convergence analysis of fixed-point iteration with Anderson Acceleration on a simplified neutronics/thermal-hydraulics system
    Lee, Jaejin
    Joo, Han Gyu
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (02) : 532 - 545
  • [8] Simplicity of eigenvalues in Anderson-type models
    Naboko, Sergey
    Nichols, Roger
    Stolz, Guenter
    ARKIV FOR MATEMATIK, 2013, 51 (01): : 157 - 183
  • [9] Anderson-type polyoxometalates for catalytic applications
    Li, Ai-Juan
    Huang, Sheng-Li
    Yang, Guo-Yu
    DALTON TRANSACTIONS, 2023, 52 (48) : 18133 - 18136
  • [10] Anderson Acceleration as a Krylov Method with Application to Convergence Analysis
    Hans De Sterck
    Yunhui He
    Oliver A. Krzysik
    Journal of Scientific Computing, 2024, 99