A class of robust and fully efficient regression estimators

被引:133
|
作者
Gervini, D
Yohai, VJ
机构
[1] Univ Zurich, Dept Biostat, CH-8006 Zurich, Switzerland
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
来源
ANNALS OF STATISTICS | 2002年 / 30卷 / 02期
关键词
adaptive estimation; efficient estimation; maximum breakdown point; weighted least squares;
D O I
10.1214/aos/1021379866
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new class of robust estimators for the linear regression model. They are weighted least squares estimators, with weights adaptively computed using the empirical distribution of the residuals of an initial robust estimator. It is shown that under certain general conditions the asymptotic breakdown points of the proposed estimators are not less than that of the initial estimator, and the finite sample breakdown point can be at most 1/n less. For the special case of the least median of squares as initial estimator, hard rejection weights and normal errors and carriers, the maximum bias function of the proposed estimators for point-mass contaminations is numerically computed, with the result that there is almost no worsening of bias. Moreover-and this is the original contribution of this paper-if the errors are normally distributed and under fairly general conditions on the design the proposed estimators have full asymptotic efficiency. A Monte Carlo study shows that they have better behavior than the initial estimators for finite sample sizes.
引用
收藏
页码:583 / 616
页数:34
相关论文
共 50 条
  • [1] On the efficient computation of robust regression estimators
    Flores, Salvador
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3044 - 3056
  • [2] An efficient class of regression estimators using conventional measures
    Ijaz, Muhammad
    Asim, Syed Muhammad
    Haider, Bushra
    Brahim, Samir
    Zaman, Tolga
    [J]. JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2023, 26 (04) : 823 - 832
  • [3] A class of optimization problems motivated by rank estimators in robust regression
    Cerny, Michal
    Rada, Miroslav
    Antoch, Jaromir
    Hladik, Milan
    [J]. OPTIMIZATION, 2022, 71 (08) : 2241 - 2271
  • [4] A CLASS OF ALMOST UNBIASED AND EFFICIENT ESTIMATORS OF REGRESSION-COEFFICIENTS
    KADIYALA, K
    [J]. ECONOMICS LETTERS, 1984, 16 (3-4) : 293 - 296
  • [5] CLASS OF ROBUST ESTIMATORS
    POLLAK, M
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1979, 8 (06): : 509 - 531
  • [6] RATIO ESTIMATORS USING ROBUST REGRESSION
    Kadilar, Cern
    Candan, Meral
    Cingi, Hulya
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2007, 36 (02): : 181 - 188
  • [7] COMPARISON OF PRELIMINARY ESTIMATORS FOR ROBUST REGRESSION
    HARVEY, AC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (360) : 910 - 913
  • [8] On Confidence Intervals of Robust Regression Estimators
    Lee, Dong-Hee
    Park, YouSung
    Kim, Kee Whan
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2006, 19 (01) : 97 - 110
  • [9] ROBUST RIDGE ESTIMATORS AND REGRESSION DIAGNOSTICS
    DEWET, AG
    DEWET, T
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1981, 15 (02) : 191 - 191
  • [10] ON THE DESIGN OF ROBUST REGRESSION-ESTIMATORS
    YOUCAI, H
    MERTIKAS, SP
    [J]. MANUSCRIPTA GEODAETICA, 1995, 20 (03): : 145 - 160