Cartan involutions and normalizers of maximal tori

被引:0
|
作者
Dwyer, WG [1 ]
Wilkerson, CW
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One consequence of Tits' well known work [12] on the structure of the normalizer of the maximal torus in a connected compact Lie group is that twice the k-invariant classifying the extension.
引用
收藏
页码:295 / 309
页数:15
相关论文
共 50 条
  • [1] Normalizers of maximal tori
    Jesper M. Møller
    Mathematische Zeitschrift, 1999, 231 : 51 - 74
  • [2] Normalizers of maximal tori
    Moller, JM
    MATHEMATISCHE ZEITSCHRIFT, 1999, 231 (01) : 51 - 74
  • [3] ON NORMALIZERS OF MAXIMAL TORI IN CLASSICAL LIE GROUPS
    Gerasimov, A. A.
    Lebedev, D. R.
    Oblezin, S., V
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (02) : 245 - 285
  • [4] Normalizers of maximal tori and real forms of Lie groups
    Gerasimov, Anton A.
    Lebedev, Dmitrii R.
    Oblezin, Sergey, V
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (02) : 655 - 671
  • [5] REPRESENTATIONS OF THE NORMALIZERS OF MAXIMAL TORI OF SIMPLE LIE GROUPS
    Matsuzawa, Jun-ichi
    Takahashi, Makoto
    TSUKUBA JOURNAL OF MATHEMATICS, 2009, 33 (02) : 189 - 237
  • [6] Normalizers of maximal tori and real forms of Lie groups
    Anton A. Gerasimov
    Dmitrii R. Lebedev
    Sergey V. Oblezin
    European Journal of Mathematics, 2022, 8 : 655 - 671
  • [7] Splitting of Normalizers of Maximal Tori in Finite Groups of Lie Type
    Galt, A. A.
    Staroletov, A. M.
    ALGEBRA AND LOGIC, 2023, 62 (01) : 22 - 40
  • [8] Splitting of Normalizers of Maximal Tori in Finite Groups of Lie Type
    A. A. Galt
    A. M. Staroletov
    Algebra and Logic, 2023, 62 (1) : 22 - 40
  • [9] Automorphisms of normalizers of maximal tori and first cohomology of Weyl groups
    Hämmerli, JF
    Matthey, M
    Suter, U
    JOURNAL OF LIE THEORY, 2004, 14 (02) : 583 - 617
  • [10] Normalizers of tori
    Dwyer, WG
    Wilkerson, CW
    GEOMETRY & TOPOLOGY, 2005, 9 : 1337 - 1380