Convergent evolution of hetero-oligomeric cellulose synthesis complexes in mosses and seed plants

被引:6
|
作者
Li, Xingxing [1 ]
Speicher, Tori L. [2 ]
Dees, Dianka C. T. [3 ]
Mansoori, Nasim [3 ]
McManus, John B. [4 ]
Tien, Ming [4 ]
Trindade, Luisa M. [4 ]
Wallace, Ian S. [2 ]
Roberts, Alison W. [1 ]
机构
[1] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA
[2] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA
[3] Wageningen Univ & Res, Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands
[4] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
来源
PLANT JOURNAL | 2019年 / 99卷 / 05期
基金
美国国家科学基金会;
关键词
cellulose; cellulose synthase; cellulose synthesis complex; cell wall; convergent evolution; Physcomitrella patens; SYNTHASE COMPLEXES; PROTEIN INTERACTIONS; GENES; EXPRESSION; BIOSYNTHESIS; CESA; IDENTIFICATION; VISUALIZATION; DEPOSITION; DEFICIENT;
D O I
10.1111/tpj.14366
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In seed plants, cellulose is synthesized by rosette-shaped cellulose synthesis complexes (CSCs) that are obligate hetero-oligomeric, comprising three non-interchangeable cellulose synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancestor with seed plants had rosette CSCs and a single CESA gene. Therefore, if P. patens CSCs are hetero-oligomeric, then CSCs of this type evolved convergently in mosses and seed plants. Previous gene knockout and promoter swap experiments showed that PpCESAs from class A (PpCESA3 and PpCESA8) and class B (PpCESA6 and PpCESA7) have non-redundant functions in secondary cell wall cellulose deposition in leaf midribs, whereas the two members of each class are redundant. Based on these observations, we proposed the hypothesis that the secondary class A and class B PpCESAs associate to form hetero-oligomeric CSCs. Here we show that transcription of secondary class A PpCESAs is reduced when secondary class B PpCESAs are knocked out and vice versa, as expected for genes encoding isoforms that occupy distinct positions within the same CSC. The class A and class B isoforms co-accumulate in developing gametophores and co-immunoprecipitate, suggesting that they interact to form a complex in planta. Finally, secondary PpCESAs interact with each other, whereas three of four fail to self-interact when expressed in two different heterologous systems. These results are consistent with the hypothesis that obligate hetero-oligomeric CSCs evolved independently in mosses and seed plants and we propose the constructive neutral evolution hypothesis as a plausible explanation for convergent evolution of hetero-oligomeric CSCs.
引用
收藏
页码:862 / 876
页数:15
相关论文
共 28 条
  • [1] Cellulose synthesis complexes are homo-oligomeric and hetero-oligomeric in Physcomitrium patens
    Li, Xingxing
    Chaves, Arielle M.
    Dees, Dianka C. T.
    Mansoori, Nasim
    Yuan, Kai
    Speicher, Tori L.
    Norris, Joanna H.
    Wallace, Ian S.
    Trindade, Luisa M.
    Roberts, Alison W.
    PLANT PHYSIOLOGY, 2022, 188 (04) : 2115 - 2130
  • [2] Structure and Function of the Hetero-oligomeric Cysteine Synthase Complex in Plants
    Wirtz, Markus
    Birke, Hannah
    Heeg, Corinna
    Mueller, Christopher
    Hosp, Fabian
    Throm, Christian
    Koenig, Stephan
    Feldman-Salit, Anna
    Rippe, Karsten
    Petersen, Gabriele
    Wade, Rebecca C.
    Rybin, Vladimir
    Scheffzek, Klaus
    Hell, Ruediger
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (43) : 32810 - 32817
  • [3] Rbfox family proteins make the homo- and hetero-oligomeric complexes
    Choi, Sunkyung
    Kim, Yong-Eun
    Kim, Jae Whan
    Cho, Namjoon
    Cheon, Seonghye
    Kim, Kee K.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (01) : 1022 - 1027
  • [4] Claudius form homo- and hetero-oligomeric complexes in tight junctions in vivo
    Pape, UIrich-Frank
    Hofmann, Ilse
    Langbein, Lutz
    Praetzel, Silke
    Schlueter, Holger
    Vobis, Diana
    Wolf, Sarah
    Franke, Werner
    CELL STRUCTURE AND FUNCTION, 2004, 29 : 50 - 50
  • [5] AGR2-AGR3 hetero-oligomeric complexes: Identification and characterization
    Cernocka, Hana
    Vonka, Petr
    Kasalova, Veronika
    Sommerova, Lucia
    Vandova, Veronika
    Hrstka, Roman
    Ostatna, Veronika
    BIOELECTROCHEMISTRY, 2021, 140
  • [6] Chaperonin Cofactors, Cpn10 and Cpn20, of Green Algae and Plants Function as Hetero-oligomeric Ring Complexes
    Tsai, Yi-Chin C.
    Mueller-Cajar, Oliver
    Saschenbrecker, Sandra
    Hartl, F. Ulrich
    Hayer-Hartl, Manajit
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (24) : 20471 - 20481
  • [7] KCTD5 Forms Hetero-Oligomeric Complexes with Various Members of the KCTD Protein Family
    Liao, Yini
    Sloan, Douglas C.
    Widjaja, Josephine H.
    Muntean, Brian S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [8] Hetero-Oligomeric Complexes Formed by the Homo-Oligomeric Transmembrane Domains of HIV-1 Vpu and Human Tetherin
    Cole, Gregory
    Sharpe, Simon
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 226A - 226A
  • [9] Human small heat shock proteins: Protein interactomes of homo- and hetero-oligomeric complexes: An update
    Arrigo, Andre-Patrick
    FEBS LETTERS, 2013, 587 (13) : 1959 - 1969
  • [10] Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors
    tenDijke, P
    Miyazono, K
    Heldin, CH
    CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (02) : 139 - 145