Synthesizing Multi-Contrast MR Images Via Novel 3D Conditional Variational Auto-Encoding GAN

被引:18
|
作者
Yang, Huan [1 ,2 ,3 ]
Lu, Xianling [2 ,3 ]
Wang, Shui-Hua [4 ]
Lu, Zhihai [5 ]
Yao, Jian [6 ]
Jiang, Yizhang [1 ,2 ]
Qian, Pengjiang [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Jiangsu Key Lab Media Design & Software Technol, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[4] Loughborough Univ, Sch Architecture Bldg & Civil Engn, Loughborough LE11 3TU, Leics, England
[5] Nanjing Normal Univ, Sch Educ Sci, Nanjing 210096, Peoples R China
[6] Wuxi IoT Innovat Ctr Co Ltd, Wuxi 214000, Jiangsu, Peoples R China
来源
MOBILE NETWORKS & APPLICATIONS | 2021年 / 26卷 / 01期
关键词
MR synthesis; 3D; Multi-contrast; Auto-encoding; Generative adversarial network; DELINEATION; GENERATION; CT;
D O I
10.1007/s11036-020-01678-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As two different modalities of medical images, Magnetic Resonance (MR) and Computer Tomography (CT), provide mutually-complementary information to doctors in clinical applications. However, to obtain both images sometimes is cost-consuming and unavailable, particularly for special populations. For example, patients with metal implants are not suitable for MR scanning. Also, it is probably infeasible to acquire multi-contrast MR images during once clinical scanning. In this context, to synthesize needed MR images for patients whose CT images are available becomes valuable. To this end, we present a novel generative network, called CAE-ACGAN, which incorporates the advantages of Variational Auto-Encoder (VAE) and Generative Adversarial Network (GAN) with an auxiliary discriminative classifier network. We apply this network to synthesize multi-contrast MR images from single CT and conduct experiments on brain datasets. Our main contributions can be summarized as follows: 1)We alleviate the problems of images blurriness and mode collapse by integrating the advantages of VAE and GAN; 2) We solve the complicated cross-domain, multi-contrast MR synthesis task using the proposed network; 3) The technique of random-extraction-patches is used to lower the limit of insufficient training data, enabling to obtain promising results even with limited available data; 4) By comparing with other typical networks, we are able to yield nearer-real, higher-quality synthetic MR images, demonstrating the effectiveness and stability of our proposed network.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 50 条
  • [1] Synthesizing Multi-Contrast MR Images Via Novel 3D Conditional Variational Auto-Encoding GAN
    Huan Yang
    Xianling Lu
    Shui-Hua Wang
    Zhihai Lu
    Jian Yao
    Yizhang Jiang
    Pengjiang Qian
    Mobile Networks and Applications, 2021, 26 : 415 - 424
  • [2] Self-supervised Multi-view Learning via Auto-encoding 3D Transformations
    Gao, Xiang
    Hu, Wei
    Qi, Guo-Jun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (01)
  • [3] An Auto-encoding model for 3D object surface reconstruction
    Dang, ChengLiang
    Yang, YongLi
    Chen, Bin
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2414 - 2419
  • [4] Synthesizing 3D Multi-Contrast Brain Tumor MRIs Using Tumor Mask Conditioning
    Truong, Nghi C. D.
    Yogananda, Chandan Ganesh Bangalore
    Wagner, Benjamin C.
    Holcomb, James M.
    Reddy, Divya
    Saadat, Niloufar
    Hatanpaa, Kimmo J.
    Patel, Toral R.
    Fei, Baowei
    Lee, Matthew D.
    Jain, Rajan
    Bruce, Richard J.
    Pinho, Marco C.
    Madhuranthakam, Ananth J.
    Maldjian, Joseph A.
    IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, MEDICAL IMAGING 2024, 2024, 12931
  • [5] Data Augmentation of 3D Brain Environment Using Deep Convolutional Refined Auto-Encoding Alpha GAN
    Segato, Alice
    Corbetta, Valentina
    Di Marzo, Marco
    Pozzi, Luca
    De Momi, Elena
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2021, 3 (01): : 269 - 272
  • [6] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Moraal, Bastiaan
    Roosendaal, Stefan D.
    Pouwels, Petra J. W.
    Vrenken, Hugo
    van Schijndel, Ronald A.
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Geurts, Jeroen J. G.
    Barkhof, Frederik
    NEURORADIOLOGY JOURNAL, 2009, 22 : 33 - 42
  • [7] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Moraal, Bastiaan
    Roosendaal, Stefan D.
    Pouwels, Petra J. W.
    Vrenken, Hugo
    Van Schijndel, Ronald A.
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Geurts, Jeroen J. G.
    Barkhof, Frederik
    EUROPEAN RADIOLOGY, 2008, 18 (10) : 2311 - 2320
  • [8] Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
    Bastiaan Moraal
    Stefan D. Roosendaal
    Petra J. W. Pouwels
    Hugo Vrenken
    Ronald A. van Schijndel
    Dominik S. Meier
    Charles R. G. Guttmann
    Jeroen J. G. Geurts
    Frederik Barkhof
    European Radiology, 2008, 18
  • [9] Molecule Joint Auto-Encoding: Trajectory Pretraining with 2D and 3D Diffusion
    Du, Weitao
    Chen, Jiujiu
    Zhang, Xuecang
    Ma, Zhiming
    Liu, Shengchao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks
    Kwon, Gihyun
    Han, Chihye
    Kim, Dae-shik
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 118 - 126