Mixing and relaxation dynamics of the Henon map at the edge of chaos

被引:4
|
作者
Borges, EP
Tirnakli, U [1 ]
机构
[1] Ege Univ, Dept Phys, Fac Sci, TR-35100 Izmir, Turkey
[2] Univ Fed Bahia, Escola Politecn, BR-40210630 Salvador, BA, Brazil
关键词
nonextensive thermostatistics; Heron maps; dynamical systems;
D O I
10.1016/j.physd.2004.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mixing properties (or sensitivity to initial conditions) and relaxation dynamics of the Henon map, together with the connection between these concepts, have been explored numerically at the edge of chaos. It is found that the results are consistent with those coming from one-dimensional dissipative maps. This constitutes the first verification of the scenario in two-dimensional cases and obviously reinforces the idea of weak mixing. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 50 条
  • [1] Two-dimensional maps at the edge of chaos: Numerical results for the Henon map
    Tirnakli, U
    PHYSICAL REVIEW E, 2002, 66 (06): : 4 - 066212
  • [2] THE DYNAMICS OF THE HENON MAP
    BENEDICKS, M
    CARLESON, L
    ANNALS OF MATHEMATICS, 1991, 133 (01) : 73 - 169
  • [3] TRANSIENT CHAOS IN A GENERALIZED HENON MAP ON THE TORUS
    IZRAILEV, FM
    TIMMERMANN, B
    TIMMERMANN, W
    PHYSICS LETTERS A, 1988, 126 (07) : 405 - 410
  • [4] ON THE SYMBOLIC DYNAMICS OF THE HENON MAP
    GRASSBERGER, P
    KANTZ, H
    MOENIG, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24): : 5217 - 5230
  • [5] Controlling chaos in Henon map by the constant feedback method
    Hao Jian-Hong
    Xu Hai-Bo
    Yu Jin-Jiang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (02) : 279 - 287
  • [6] REMARKS ON THE SYMBOLIC DYNAMICS FOR THE HENON MAP
    HANSEN, KT
    PHYSICS LETTERS A, 1992, 165 (02) : 100 - 104
  • [7] Gradient Control of Henon Map Dynamics
    Guzenko, P. Y.
    Fradkov, A. L.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (03):
  • [8] Complex Dynamics in Generalized Henon Map
    Cai, Meixiang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [9] Arithmetical signatures of the dynamics of the Henon map
    Endler, AN
    Gallas, JAC
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036231
  • [10] Gradient control of Henon map dynamics
    Guzenko, PY
    Fradkov, AL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (03): : 701 - 705