On local Hamiltonians and dissipative systems

被引:3
|
作者
Castagnino, M.
Gadella, M.
Lara, L. P.
机构
[1] Univ Valladolid, Fac Ciencias, Dept Fis Teor, E-47011 Valladolid, Spain
[2] Consejo Nacl Invest Cient & Tecn, Inst Fis Rosario & Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina
[3] UNR, Fac Ciencias Exactas Ingn & Agrimensura, Rosario, Argentina
关键词
D O I
10.1016/j.chaos.2006.03.094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:542 / 551
页数:10
相关论文
共 50 条
  • [1] Linear open quantum systems with passive Hamiltonians and a single local dissipative process
    Ma, Shan
    Woolley, Matthew J.
    Petersen, Ian R.
    Yamamoto, Naoki
    AUTOMATICA, 2021, 125
  • [2] Global optimization of spin Hamiltonians with gain-dissipative systems
    Kalinin, Kirill P.
    Berloff, Natalia G.
    SCIENTIFIC REPORTS, 2018, 8
  • [3] Global optimization of spin Hamiltonians with gain-dissipative systems
    Kirill P. Kalinin
    Natalia G. Berloff
    Scientific Reports, 8
  • [4] Local analysis of dissipative dynamical systems
    Nagarajan, R
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (05): : 1515 - 1547
  • [5] Stability of Local Quantum Dissipative Systems
    Cubitt, Toby S.
    Lucia, Angelo
    Michalakis, Spyridon
    Perez-Garcia, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1275 - 1315
  • [6] Stability of Local Quantum Dissipative Systems
    Toby S. Cubitt
    Angelo Lucia
    Spyridon Michalakis
    David Perez-Garcia
    Communications in Mathematical Physics, 2015, 337 : 1275 - 1315
  • [7] Pure Gaussian quantum states from passive Hamiltonians and an active local dissipative process
    Ma, Shan
    Woolley, Matthew J.
    Petersen, Ian R.
    Yamamoto, Naoki
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2519 - 2522
  • [8] Mapping local Hamiltonians of fermions to local Hamiltonians of spins
    Verstraete, F
    Cirac, JI
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 305 - 314
  • [9] Local asymptotic stability for dissipative wave systems
    Pucci, P
    Serrin, J
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 104 (1) : 29 - 50
  • [10] Local Lyapunov exponents for dissipative continuous systems
    Grond, F
    Diebner, HH
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1809 - 1817