The θ-Congruent Number Elliptic Curves via Fermat-type Algorithms

被引:0
|
作者
Salami, Sajad [1 ]
Zargar, Arman Shamsi [2 ]
机构
[1] Univ Estadual Rio de Janeiro UERJ, Inst Matemat & Estat, Rio De Janeiro, Brazil
[2] Univ Mohaghegh Ardabili, Fac Sci, Dept Math & Applicat, Ardebil 5619911367, Iran
来源
关键词
theta-Congruent number; Rational theta-triangle; Elliptic curve; Fermat's algorithm;
D O I
10.1007/s00574-020-00237-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A positive integer N is called a theta-congruent number if there is a theta-triangle (a, b, c) with rational sides for which the angle between a and b is equal to. and its area is N root r(2) - s(2), where theta is an element of (0, pi), cos(theta) = s/r, and 0 <= vertical bar s vertical bar < r are coprime integers. It is attributed to Fujiwara (Number Theory, de Gruyter, pp 235-241, 1997) that N is a theta-congruent number if and only if the elliptic curve E-N(theta) : y(2) = x(x + (r + s) N)(x - (r - s) N) has a point of order greater than 2 in its group of rational points. Moreover, a natural number N not equal 1, 2, 3,6 is a theta-congruent number if and only if rank of E-N(theta) (Q) is greater than zero. In this paper, we answer positively to a question concerning with the existence of methods to create new rational theta-triangle for a theta-congruent number N from given ones by generalizing the Fermat's algorithm, which produces new rational right triangles for congruent numbers from a given one, for any angle theta satisfying the above conditions. We show that this generalization is analogous to the duplication formula in E-N(theta) (Q). Then, based on the addition of two distinct points in E-N(theta) (Q), we provide a way to find new rational theta-triangles for the theta-congruent number N using given two distinct ones. Finally, we give an alternative proof for the Fujiwara's Theorem 2.2 and one side of Theorem 2.3. In particular, we provide a list of all torsion points in E-N(theta) (Q) with corresponding rational theta-triangles.
引用
收藏
页码:893 / 908
页数:16
相关论文
共 50 条
  • [1] Diminished Fermat-type arrangements and unexpected curves
    Kabat, Jakub
    Strycharz-Szemberg, Beata
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 603 - 608
  • [2] Rank computations for the congruent number elliptic curves
    Rogers, NF
    EXPERIMENTAL MATHEMATICS, 2000, 9 (04) : 591 - 594
  • [3] Solving Fermat-type equations via modular Q-curves over polyquadratic fields
    Dieulefait, Luis
    Jimenez Urroz, Jorge
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 183 - 195
  • [4] ARITHMETIC PROGRESSIONS ON CONGRUENT NUMBER ELLIPTIC CURVES
    Spearman, Blair K.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (06) : 2033 - 2044
  • [5] Fermat-type equations of signature via Hilbert cuspforms
    Dieulefait, Luis
    Freitas, Nuno
    MATHEMATISCHE ANNALEN, 2013, 357 (03) : 987 - 1004
  • [6] On a Fermat-type Diophantine equation
    Sitaraman, S
    JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 174 - 186
  • [7] A Search for High Rank Congruent Number Elliptic Curves
    Dujella, Andrej
    Janfada, Ali S.
    Salami, Sajad
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (05)
  • [8] Congruent Number Elliptic Curves with Rank at Least Three
    Johnstone, Jennifer A.
    Spearman, Blair K.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (04): : 661 - 666
  • [9] A family of congruent number elliptic curves of rank three
    Halbeisen, Lorenz
    Hungerbuehler, Norbert
    Zargar, Arman Shamsi
    QUAESTIONES MATHEMATICAE, 2023, 46 (06) : 1131 - 1137
  • [10] Note on a Fermat-type diophantine equation
    Sitaraman, S
    JOURNAL OF NUMBER THEORY, 2003, 99 (01) : 29 - 35