A nodec regular analytic topology

被引:4
|
作者
Todorcevic, S. [1 ,2 ]
Uzcategui, C. [3 ]
机构
[1] CNRS, Inst Math Jussieu, Paris, France
[2] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[3] Univ Los Andes, Fac Ciencias, Dept Matemat, Merida 5101, Venezuela
关键词
Maximal topologies; Nodec countable spaces; Analytic sets; SETS; SPACES;
D O I
10.1016/j.topol.2014.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological space X is said to be maximal if its topology is maximal among all T-1 topologies over X without isolated points. It is known that a space is maximal if, and only if, it is extremely disconnected, nodec and every open set is irresolvable. We present some results about the complexity of those properties on countable spaces. A countable topological space X is analytic if its topology is an analytic subset of P(X) identified with the Cantor cube {0,1}(x). No extremely disconnected space can be analytic and every analytic space is hereditarily resolvable. However, we construct an example of a nodec regular analytic space. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [1] Combinatorial properties on nodec countable spaces with analytic topology
    Murgas, Javier
    Uzcategui, Carlos
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 272
  • [2] Analytic Topology
    Reznikov, A
    [J]. EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 2001, 201 : 519 - 532
  • [3] REGULAR ANALYTIC SPACES
    SAINTPIERRE, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (24): : 1425 - 1427
  • [4] Regular analytic independence and extensions of analytic spread
    Diagana, YM
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (06) : 2745 - 2761
  • [5] F-nodec spaces
    Dridi, Lobna
    Mhemdi, Abdelwaheb
    Turki, Tarek
    [J]. APPLIED GENERAL TOPOLOGY, 2015, 16 (01): : 53 - 64
  • [6] Soft nodec spaces
    Alqahtani, Mesfer H.
    Ameen, Zanyar A.
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 3289 - 3302
  • [7] The sequential topology on NNN is not regular
    Schroeder, Matthias
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2009, 19 (05) : 943 - 957
  • [8] The regular topology on C(X)
    Iberkleid, Wolf
    Lafuente-Rodriguez, Ramiro
    McGovern, Warren Wm
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (03): : 445 - 461
  • [9] PS-Regular Sets in Topology and Generalized Topology
    Gupta, Ankit
    Sarma, Ratna Dev
    [J]. JOURNAL OF MATHEMATICS, 2014, 2014
  • [10] On the topology of real analytic maps
    Cisneros-Molina, Jose Luis
    Seade, Jose
    Grulha, Nivaldo G., Jr.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (07)