Genome Editing Using Mammalian Haploid Cells

被引:14
|
作者
Horii, Takuro [1 ]
Hatada, Izuho [1 ]
机构
[1] Gunma Univ, Inst Mol & Cellular Regulat, Lab Genome Sci, Biosignal Genome Resource Ctr, Maebashi, Gunma 3718512, Japan
来源
关键词
haploid; embryonic stem cell; CRISPR/Cas; EMBRYONIC STEM-CELLS; GENETIC SCREENS; GENERATION; MICE; CAS9; MUTATIONS; ESTABLISHMENT; CRISPR/CAS9; TRANSPORTER; DERIVATION;
D O I
10.3390/ijms161023604
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For example, CRISPR/Cas was used in haploid ESCs to generate multiple knockouts and large deletions at high efficiency. In addition, genome-wide screening is facilitated by haploid cell lines containing gene knockout libraries.
引用
收藏
页码:23604 / 23614
页数:11
相关论文
共 50 条
  • [1] Heritable genome editing in haploid mouse embryonic stem cells
    Pizzo, E.
    De Jesus, A.
    Xie, P.
    Lari, E.
    Zev, R.
    Palermo, G.
    HUMAN REPRODUCTION, 2024, 39
  • [2] Precision genome editing using cytosine and adenine base editors in mammalian cells
    Tony P. Huang
    Gregory A. Newby
    David R. Liu
    Nature Protocols, 2021, 16 : 1089 - 1128
  • [3] Targeted Genome Editing in Mammalian Cells Using Engineered Zinc Finger Nucleases
    Santiago, Y.
    Chan, E.
    Liu, P. Q.
    Orlando, S.
    Zhang, L.
    Urnov, F. D.
    Holmes, M. C.
    Guschin, D.
    Waite, A.
    Miller, J. C.
    Rebar, E. J.
    Gregory, P. D.
    Klug, A.
    Collingwood, T. N.
    HUMAN GENE THERAPY, 2009, 20 (06) : 669 - 669
  • [4] Precision genome editing using cytosine and adenine base editors in mammalian cells
    Huang, Tony P.
    Newby, Gregory A.
    Liu, David R.
    NATURE PROTOCOLS, 2021, 16 (02) : 1089 - 1128
  • [5] Genome editing in mammalian cells using the CRISPR type I-D nuclease
    Osakabe, Keishi
    Wada, Naoki
    Murakami, Emi
    Miyashita, Naoyuki
    Osakabe, Yuriko
    NUCLEIC ACIDS RESEARCH, 2021, 49 (11) : 6347 - 6363
  • [6] Base editing the mammalian genome
    Schatoff, Emma M.
    Zafra, Maria Paz
    Dow, Lukas E.
    METHODS, 2019, 164 : 100 - 108
  • [7] Genome editing in mammalian cells by cascade and Cas3
    Morisaka, H.
    Sano, S.
    Takeda, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (05) : S84 - S84
  • [8] SaCas9 Mediated Genome Editing in Mammalian Cells
    Parsijani, P. Javidi
    Lu, B.
    Atala, A.
    TISSUE ENGINEERING PART A, 2017, 23 : S150 - S150
  • [9] CRISPR-Cas systems for genome editing of mammalian cells
    Mani, Indra
    Arazoe, Takayuki
    Singh, Vijai
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 15 - 30
  • [10] Multiplex genome editing of mammalian cells for producing recombinant heparin
    Thacker, Bryan E.
    Thorne, Kristen J.
    Cartwright, Colin
    Park, Jeeyoung
    Glass, Kimberly
    Chea, Annie
    Kellman, Benjamin P.
    Lewis, Nathan E.
    Wang, Zhenping
    Di Nardo, Anna
    Sharfstein, Susan T.
    Jeske, Walter
    Walenga, Jeanine
    Hogwood, John
    Gray, Elaine
    Mulloy, Barbara
    Esko, Jeffrey D.
    Glass, Charles A.
    METABOLIC ENGINEERING, 2022, 70 : 155 - 165