Periodic solutions of neutral functional differential equations

被引:3
|
作者
Wang, LL [1 ]
Wang, ZC
Zou, XF
机构
[1] Hunan Univ, Dept Appl Math, Changsha 410082, Hunan, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
D O I
10.1112/S0024610701003076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Periodic neutral functional differential equations are considered. Sufficient conditions for existence, uniqueness and global attractivity of periodic solutions are established by combining the theory of monotone semiflows generated by neutral functional differential equations and Krasnosel'skii's fixed-point theorem. These results are applied to a concrete neutral functional differential equation that can model single-species growth, the spread of epidemics, and the dynamics of capital stocks in a periodic environment.
引用
收藏
页码:439 / 452
页数:14
相关论文
共 50 条
  • [1] PERIODIC SOLUTIONS OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
    彭世国
    朱思铭
    [J]. Acta Mathematica Scientia, 2001, (01) : 98 - 102
  • [2] Periodic solutions of neutral functional differential equations
    Peng, SG
    Zhu, SM
    [J]. ACTA MATHEMATICA SCIENTIA, 2001, 21 (01) : 98 - 102
  • [3] Periodic solutions of neutral functional differential equations
    Afonso, S. M.
    Bonotto, E. M.
    da Silva, M. R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 350 : 89 - 123
  • [4] Periodic solutions of abstract neutral functional differential equations
    Henriquez, Hernan R.
    Pierri, Michelle
    Prokopczyk, Andrea
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 608 - 621
  • [5] Positive periodic solutions for neutral functional differential equations
    Wang, Weibing
    Shen, Jianhua
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 102
  • [6] Periodic solutions of convex neutral functional differential equations
    Fan, M
    Wang, K
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (01) : 47 - 59
  • [7] Almost periodic solutions of neutral functional differential equations
    Chen, Xiaoxing
    Lin, Faxing
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 1182 - 1189
  • [8] Periodic solutions of functional differential equations of neutral type
    Babram, MA
    Ezzinbi, K
    Benkhalti, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) : 898 - 909
  • [9] Almost periodic solutions of neutral functional differential equations
    Abbas, S.
    Bahuguna, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (11) : 2593 - 2601
  • [10] PERIODIC SOLUTIONS FOR SOME PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
    Benkhalti, Rachid
    Elazzouzi, Abdelhai
    Ezzinbi, Khalil
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,