Purification and crystallization of precursors and autoprocessed enzymes of Flavobacterium glycosylasparaginase:: an N-terminal nucleophile hydrolase

被引:8
|
作者
Cui, T
Liao, PH
Guan, CD
Guo, HC
机构
[1] New England Biolabs Inc, Beverly, MA 01915 USA
[2] Boston Univ, Sch Med, Dept Biophys, Boston, MA 02118 USA
关键词
D O I
10.1107/S0907444999011798
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Glycosylasparaginase (GA) represents a novel group of proteins that are activated by self-catalyzed peptide-bond cleavage from a single-chain precursor to yield the two subunits required for hydrolase activity. The wild-type GA precursor autoproteolyzes spontaneously into alpha and beta subunits. Strategies are reported here for purification to homogeneity of GA from Flavobacterium meningosepticum in both single-chain precursor and mature (autoprocessed) forms. The recombinant proteins crystallize in different space groups: P1 and P2(1) for the precursor and mature enzymes, respectively. The precursor crystals diffract to 1.9 Angstrom resolution with laboratory X-ray radiation.
引用
收藏
页码:1961 / 1964
页数:4
相关论文
共 50 条
  • [1] Crystal structures of Flavobacterium glycosylasparaginase -: An N-terminal nucleophile hydrolase activated by intramolecular proteolysis
    Guo, HC
    Xu, Q
    Buckley, D
    Guan, C
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (32) : 20205 - 20212
  • [2] Quantum chemical studies of the catalytic mechanism of N-terminal nucleophile hydrolase
    G. G. Chilov
    A. V. Sidorova
    V. K. Švedas
    Biochemistry (Moscow), 2007, 72 : 495 - 500
  • [3] Quantum chemical studies of the catalytic mechanism of N-terminal nucleophile hydrolase
    Chilov, G. G.
    Sidorova, A. V.
    Svedas, V. K.
    BIOCHEMISTRY-MOSCOW, 2007, 72 (05) : 495 - 500
  • [4] Crossover inhibition as an indicator of convergent evolution of enzyme mechanisms: A β-lactamase and a N-terminal nucleophile hydrolase
    Adediran, S. A.
    Lin, G.
    Pelto, R. B.
    Pratt, R. F.
    FEBS LETTERS, 2012, 586 (23) : 4186 - 4189
  • [5] Evidence supporting a catalytic pentad mechanism for the proteasome and other N-terminal nucleophile enzymes
    Fung, Darlene
    Razi, Aida
    Pandos, Michael
    Velez, Benjamin
    Fermin Perez, Erignacio
    Adams, Lea
    Rawson, Shaun
    Walsh Jr, Richard M.
    Hanna, John
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [6] A novel function for the N-terminal nucleophile hydrolase fold demonstrated by the structure of an archaeal inosine monophosphate cyclohydrolase
    Kang, You-Na
    Tran, Anh
    White, Robert H.
    Ealick, Steven E.
    BIOCHEMISTRY, 2007, 46 (17) : 5050 - 5062
  • [7] Activation of glycosylasparaginase - Formation of active N-terminal threonine by intramolecular autoproteolysis
    Guan, CD
    Cui, T
    Rao, V
    Liao, W
    Benner, J
    Lin, CL
    Comb, D
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (03) : 1732 - 1737
  • [8] Lysosomal glycosylasparaginase: A member of a family of amidases that employ a processed N-terminal threonine, serine or cysteine as a combined base-nucleophile catalyst
    Aronson, NN
    GLYCOBIOLOGY, 1996, 6 (07) : 669 - 675
  • [9] Uncoupling Intramolecular Processing and Substrate Hydrolysis in the N-Terminal Nucleophile Hydrolase hASRGL1 by Circular Permutation
    Li, Wenzong
    Cantor, Jason R.
    Yogesha, S. D.
    Yang, Shirley
    Chantranupong, Lynne
    Liu, June Qingxia
    Agnello, Giulia
    Georgiou, George
    Stone, Everett M.
    Zhang, Yan
    ACS CHEMICAL BIOLOGY, 2012, 7 (11) : 1840 - 1847
  • [10] PRUNUS-SEROTINA AMYGDALIN HYDROLASE AND PRUNASIN HYDROLASE - PURIFICATION, N-TERMINAL SEQUENCING, AND ANTIBODY-PRODUCTION
    LI, CP
    SWAIN, E
    POULTON, JE
    PLANT PHYSIOLOGY, 1992, 100 (01) : 282 - 290