Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions

被引:93
|
作者
Deng, S. [1 ]
Ortiz, G. [2 ]
Viola, L. [1 ]
机构
[1] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
[2] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
关键词
D O I
10.1209/0295-5075/84/67008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the emergence of universal dynamical scaling in quantum critical spin systems adiabatically driven out of equilibrium, with emphasis on quench dynamics which involves non-isolated critical points (i.e., critical regions) and cannot be a priori described through standard scaling arguments nor time-dependent perturbative approaches. Comparing to the case of an isolated quantum critical point, we find that non-equilibrium scaling behavior of a large class of physical observables may still be explained in terms of equilibrium critical exponents. However, the latter are in general non-trivially path-dependent, and detailed knowledge about the time-dependent excitation process becomes essential. In particular, we show how multiple level crossings within a gapless phase may completely suppress excitation depending on the control path. Our results typify non-ergodic scaling in continuous finite-order quantum phase transitions. Copyright (C) EPLA, 2008
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Ergodic and non-ergodic phase transitions in globular protein suspensions
    Kulkarni, AM
    Dixit, NM
    Zukoski, CF
    FARADAY DISCUSSIONS, 2003, 123 : 37 - 50
  • [2] A theory for critically divergent fluctuations of dynamical events at non-ergodic transitions
    Iwata, M.
    Sasa, S.
    EPL, 2007, 77 (05)
  • [3] ROUGHENING TRANSITIONS OF FINITE-ORDER
    KNOPS, HJF
    PHYSICAL REVIEW B, 1979, 20 (11): : 4670 - 4673
  • [4] Non-ergodic extended phase of the Quantum Random Energy model
    Faoro, Lara
    Feigel'man, Mikhail V.
    Ioffe, Lev
    ANNALS OF PHYSICS, 2019, 409
  • [5] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [6] Scaling and Universality at Dynamical Quantum Phase Transitions
    Heyl, Markus
    PHYSICAL REVIEW LETTERS, 2015, 115 (14)
  • [7] Dynamical regimes in non-ergodic random Boolean networks
    Marco Villani
    Davide Campioli
    Chiara Damiani
    Andrea Roli
    Alessandro Filisetti
    Roberto Serra
    Natural Computing, 2017, 16 : 353 - 363
  • [8] Dynamical regimes in non-ergodic random Boolean networks
    Villani, Marco
    Campioli, Davide
    Damiani, Chiara
    Roli, Andrea
    Filisetti, Alessandro
    Serra, Roberto
    NATURAL COMPUTING, 2017, 16 (02) : 353 - 363
  • [9] First-principles predictor of the location of ergodic/non-ergodic transitions
    Ramirez-Gonzalez, P. E.
    Juarez-Maldonado, R.
    Yeomans-Reyna, L.
    Chavez-Rojo, M. A.
    Chavez-Paez, M.
    Vizcarra-Rendon, A.
    Medina-Noyola, M.
    REVISTA MEXICANA DE FISICA, 2007, 53 (05) : 327 - 331
  • [10] Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction
    Iwata, Mami
    Sasa, Shin-ichi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,