chronic hypoglycaemia;
glucose content;
glucose transport kinetics;
glycogen;
localized C-13 magnetic resonance sprectroscopy;
rat brain;
D O I:
10.1111/j.1471-4159.2006.04115.x
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain D-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized C-13 magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, T-max, by 58% compared with the sham-treated animals. The localized C-13 NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia.