Heterojunction Depth in P+-on-n eSWIR HgCdTe Infrared Detectors: Generation-Recombination Suppression

被引:6
|
作者
Schuster, J. [1 ,2 ]
DeWames, R. E. [3 ]
DeCuir, E. A., Jr. [1 ]
Bellotti, E. [2 ]
Dhar, N. [4 ]
Wijewarnasuriya, P. S. [1 ]
机构
[1] US Army Res Lab, Adelphi, MD 20783 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[3] Fulcrum Co, Centreville, VA 20120 USA
[4] US Night Vis Elect Sensing Directorate, Ft Belvoir, VA 22060 USA
关键词
HgCdTe; eSWIR; infrared detectors; heterojunction; numerical simulations; Shockley-Read-Hall; NUMERICAL-SIMULATION; PHOTODIODES; LIFETIME;
D O I
10.1117/12.2186043
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A key design feature of P+ -on-n HgCdTe detectors is the depth of the p-type region. Normally, homojunction architectures are utilized where the p-type region extends into the narrow-gap absorber layer. This facilitates the collection of photo-carriers from the absorber layer to the contact; however, this may result in excess generation-recombination (G-R) current, if defects are present. Alternatively, properly adopting a heterojunction architecture confines the p-type region (and the majority of the electric field) solely to the wide-gap layer. Junction placement is critical since the detector performance is now dependent on the following sensitivity parameters: p-type region depth, doping, valence band offset, lifetime and detector bias. Understanding, the parameter dependence near the hetero-metallurgical interface where the compositional grading occurs and the doping is varied as either a Gaussian or error function is vital to device design. Numerical modeling is now essential to properly engineer the electric field in the device to suppress G-R current while accounting for the aforementioned sensitivity parameters. The simulations reveal that through proper device design the p-type region can be confined to the wide-gap layer, reducing G-R related dark current, without significantly reducing; the quantum efficiency at the operating; bias V - -0.100V.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression
    Schuster, J.
    DeWames, R. E.
    DeCuir, E. A., Jr.
    Bellotti, E.
    Wijewarnasuriya, P. S.
    APPLIED PHYSICS LETTERS, 2015, 107 (02)
  • [2] Generation-Recombination Effect in MWIR HgCdTe Barrier Detectors for High-Temperature Operation
    Kopytko, Malgorzata
    Jozwikowski, Krzysztof
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (07) : 2278 - 2284
  • [3] Generation recombination suppression via depletion engineered heterojunction for alternative substrate MWIR HgCdTe infrared photodetectors
    Ozer, Y.
    Kocaman, S.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (14)
  • [4] Shot noise suppression in p-n junctions due to carrier generation-recombination
    Maione, I. A.
    Pellegrini, B.
    Fiori, G.
    Macucci, M.
    Guidi, L.
    Basso, G.
    PHYSICAL REVIEW B, 2011, 83 (15):
  • [5] GENERATION-RECOMBINATION OF CARRIERS IN P-N-JUNCTIONS
    MORGAN, DV
    ASHBURN, P
    ELECTRONICS LETTERS, 1974, 10 (07) : 85 - 86
  • [6] Generation-recombination effects on dark currents in CdTe-passivated midwave infrared HgCdTe photodiodes
    Jozwikowska, A
    Jozwikowski, K
    Antoszewski, J
    Musca, CA
    Nguyen, T
    Sewell, RH
    Dell, JM
    Faraone, L
    Orman, Z
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
  • [7] PHOTOCONDUCTIVE GAIN AND GENERATION-RECOMBINATION NOISE IN MULTIPLE-QUANTUM-WELL INFRARED DETECTORS
    BECK, WA
    APPLIED PHYSICS LETTERS, 1993, 63 (26) : 3589 - 3591
  • [8] AN APPROXIMATION FOR GENERATION-RECOMBINATION CURRENT IN P-N JUNCTIONS
    HAUSER, JR
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (07): : 743 - &
  • [9] GENERATION-RECOMBINATION MECHANISM IN CADMIUM TELLURIDE P-N JUNCTIONS
    LANCON, R
    MARFAING, Y
    JOURNAL DE PHYSIQUE, 1969, 30 (01): : 97 - &
  • [10] Generation-recombination and diffusion currents in HgMnTe n+-p junctions
    Kosyachenko, LA
    Markov, AV
    Ostapov, SÉ
    Rarenko, IM
    SEMICONDUCTORS, 2001, 35 (11) : 1270 - 1278