Subresultants under composition

被引:18
|
作者
Hong, H
机构
[1] Res. Inst. for Symbolic Computation, Johannes Kepler University
关键词
D O I
10.1006/jsco.1996.0093
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Composition is an operation of replacing a variable in a polynomial with another polynomial. The main question of this paper is: What happens to subresultants under composition? The main contribution of the paper is to show that the subresultants ''almost'' commute with composition. This generalizes the well-known fact that the resultant is invariant under translation. (C) 1997 Academic Press Limited.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 50 条
  • [1] MULTIVARIATE SUBRESULTANTS
    CHARDIN, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 101 (02) : 129 - 138
  • [2] Subresultants revisited
    von zur Gathen, J
    Lücking, T
    THEORETICAL COMPUTER SCIENCE, 2003, 297 (1-3) : 199 - 239
  • [3] A chain rule for subresultants
    Cheng, CCA
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 157 (01) : 33 - 39
  • [4] Symmetric subresultants and applications
    Picart, Philippe Saux
    Brunie, Cyril
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (09) : 884 - 919
  • [5] The Habicht approach to subresultants
    Ho, CJ
    Yap, CK
    JOURNAL OF SYMBOLIC COMPUTATION, 1996, 21 (01) : 1 - 14
  • [6] The Habicht Approach to Subresultants
    J Symb Comput, 1 (01):
  • [7] On the irreducibility of multivariate subresultants
    Busé, L
    D'Andrea, C
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (04) : 287 - 290
  • [8] D-resultant and subresultants
    El Kahoui, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2193 - 2199
  • [9] SUBRESULTANTS AND THE SHAPE LEMMA
    Cox, David A.
    D'Andrea, Carlos
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2355 - 2379
  • [10] Subresultants in multiple roots
    D'Andrea, Carlos
    Krick, Teresa
    Szanto, Agnes
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 1969 - 1989