Controlling epidemics with transmissible vaccines

被引:14
|
作者
Nuismer, Scott L. [1 ]
May, Ryan [2 ]
Basinski, Andrew [2 ]
Remien, Christopher H. [2 ]
机构
[1] Univ Idaho, Dept Biol Sci, Moscow, ID 83843 USA
[2] Univ Idaho, Dept Math, Moscow, ID 83843 USA
来源
PLOS ONE | 2018年 / 13卷 / 05期
关键词
PANDEMIC INFLUENZA VACCINES; CHALLENGES; EVOLUTION; DISEASE;
D O I
10.1371/journal.pone.0196978
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the density of human and domestic animal populations increases, the threat of localized epidemics and global pandemics grows. Although effective vaccines have been developed for a number of threatening pathogens, manufacturing and disseminating vaccines in the face of a rapidly spreading epidemic or pandemic remains a formidable challenge. One potentially powerful solution to this problem is the use of transmissible vaccines. Transmissible vaccines are capable of spreading from one individual to another and are currently being developed for a range of infectious diseases. Here we develop and analyze mathematical models that allow us to quantify the benefits of vaccine transmission in the face of an imminent or ongoing epidemic. Our results demonstrate that even a small amount of vaccine transmission can greatly increase the rate at which a naive host population can be protected against an anticipated epidemic and substantially reduce the size of unanticipated epidemics if vaccination is initiated shortly after pathogen detection. In addition, our results identify key biological properties and implementation practices that maximize the impact of vaccine transmission on infectious disease.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Transmissible Viral Vaccines
    Bull, James J.
    Smithson, Mark W.
    Nuismer, Scott L.
    [J]. TRENDS IN MICROBIOLOGY, 2018, 26 (01) : 6 - 15
  • [3] The transmissible spongiform encephalopathies: emerging and declining epidemics
    Manson, J. C.
    Cancellotti, E.
    Hart, P.
    Bishop, M. T.
    Barron, R. M.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 : 1155 - 1158
  • [4] CONTROLLING INFLUENZA EPIDEMICS
    ADA, GL
    [J]. IMMUNOLOGY TODAY, 1981, 2 (11): : 219 - 224
  • [5] Vaccines, epidemics, pandemics and us
    Glick, Michael
    [J]. JOURNAL OF THE AMERICAN DENTAL ASSOCIATION, 2006, 137 (06): : 706 - +
  • [6] Epidemics, vaccines, and health policy
    Amir, Rabah
    Boucekkine, Raouf
    [J]. JOURNAL OF PUBLIC ECONOMIC THEORY, 2023, 25 (06) : 1143 - 1148
  • [7] Evaluating the promise of recombinant transmissible vaccines
    Basinski, Andrew J.
    Varrelman, Tanner J.
    Smithson, Mark W.
    May, Ryan H.
    Remien, Christopher H.
    Nuismer, Scott L.
    [J]. VACCINE, 2018, 36 (05) : 675 - 682
  • [8] Developing transmissible vaccines for animal infections
    Streicker, Daniel G.
    Griffiths, Megan E.
    Antia, Rustom
    Bergner, Laura
    Bowman, Peter
    de Moraes, Maria Vitoria dos Santos
    Esvelt, Kevin
    Famulare, Mike
    Gilbert, Amy
    He, Biao
    Jarvis, Michael A.
    Kennedy, David A.
    Kuzma, Jennifer
    Wanyonyi, Carolyne Nasimiyu
    Remien, Christopher
    Rocke, Tonie
    Rosenke, Kyle
    Schreiner, Courtney
    Sheen, Justin
    Simons, David
    Yordanova, Ivet A.
    Bull, James J.
    Nuismer, Scott L.
    [J]. SCIENCE, 2024, 384 (6693) : 275 - 277
  • [9] CONTROLLING THE SPREAD OF A CLASS OF EPIDEMICS
    ARNAUTU, V
    BARBU, V
    CAPASSO, V
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 20 (03): : 297 - 317
  • [10] Controlling Epidemics via Testing
    Lotidis, Kyriakos
    Moustakas, Aris L.
    Bambos, Nicholas
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2092 - 2097