Modulated equations of Hamiltonian PDEs and dispersive shocks

被引:11
|
作者
Benzoni-Gavage, Sylvie [1 ]
Mietka, Colin [1 ]
Rodrigues, L. Miguel [2 ,3 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[2] Univ Rennes, F-35000 Rennes, France
[3] CNRS, IUF, IRMAR UMR 6625, F-35000 Rennes, France
关键词
Whitham modulated equations; periodic traveling waves; Hamiltonian dynamics; harmonic limit; soliton asymptotics; modulational instability; abbreviated action integral; generalised Korteweg-de Vries equations; Euler-Korteweg systems; KORTEWEG-DE-VRIES; NONLINEAR SCHRODINGER-EQUATION; PERIODIC-WAVES; SEMICLASSICAL LIMIT; CONSERVATION-LAWS; DEVRIES EQUATION; KDV EQUATION; STABILITY; SYSTEMS; UNIVERSALITY;
D O I
10.1088/1361-6544/abcb0a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the ongoing study of dispersive shock waves in non integrable systems, we propose and analyze a set of wave parameters for periodic waves of a large class of Hamiltonian partial differential systems-including the generalised Korteweg-de Vries equations and the Euler-Korteweg systems-that are well-behaved in both the small amplitude and large wavelength limits. We use this parametrisation to determine fine asymptotic properties of the associated modulation systems, including detailed descriptions of eigenmodes. As a consequence, in the solitary wave limit we prove that modulational instability is decided by the sign of the second derivative-with respect to speed, fixing the endstate-of the Boussinesq moment of instability; and, in the harmonic limit, we identify an explicit modulational instability index of Benjamin-Feir type.
引用
收藏
页码:578 / 641
页数:64
相关论文
共 50 条