Compressed Imaging With a Separable Sensing Operator

被引:122
|
作者
Rivenson, Yair [1 ]
Stern, Adrian [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Electroopt Engn Dept, IL-84105 Beer Sheva, Israel
关键词
Compressed sensing; compressive imaging; Kronecker product; mutual coherence; separable operator;
D O I
10.1109/LSP.2009.2017817
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive imaging (CI) is a natural branch of compressed sensing (CS). Although a number of CI implementations have started to appear, the design of efficient CI system still remains a challenging problem. One of the main difficulties in implementing CI is that it involves huge amounts of data, which has far-reaching implications for the complexity of the optical design, calibration, data storage and computational burden. In this paper, we solve these problems by using a two-dimensional separable sensing operator. By so doing, we reduce the complexity by factor of 10 for megapixel images. We show that applying this method requires only a reasonable amount of additional samples.
引用
收藏
页码:449 / 452
页数:4
相关论文
共 50 条
  • [1] Total Variation Minimization with Separable Sensing Operator
    Shishkin, Serge L.
    Wang, Hongcheng
    Hagen, Gregory S.
    [J]. IMAGE AND SIGNAL PROCESSING, PROCEEDINGS, 2010, 6134 : 86 - 93
  • [2] Total Variation Minimization with Separable Sensing Operator
    Shishkin, Serge L.
    Hagen, Gregory S.
    Wang, Hongcheng
    [J]. INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2010, 3 (04): : 55 - 66
  • [3] Radar imaging with compressed sensing
    Harding, Brian J.
    Milla, Marco
    [J]. RADIO SCIENCE, 2013, 48 (05) : 582 - 588
  • [4] Terahertz Imaging with Compressed Sensing
    Liu, Lin
    Zhang, Zijian
    Gan, Lu
    Shen, Yao-chun
    Huang, Yi
    [J]. PROCEEDINGS OF 2016 IEEE 9TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETRE WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT), 2016, : 50 - 53
  • [5] Approximate Message Passing Algorithm for Complex Separable Compressed Imaging
    Hirabayashi, Akira
    Sugimoto, Jumpei
    Mimura, Kazushi
    [J]. 2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,
  • [6] Sparse Recovery Beyond Compressed Sensing: Separable Nonlinear Inverse Problems
    Bernstein, Brett
    Liu, Sheng
    Papadaniil, Chrysa
    Fernandez-Granda, Carlos
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5904 - 5926
  • [7] SAR IMAGING BASED ON COMPRESSED SENSING
    Huan, Yifeng
    Wang, Junfeng
    Tan, Zhen
    Liu, Xingzhao
    Yu, Wenxian
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1674 - 1677
  • [8] Compressed sensing in noisy imaging environments
    Haupt, Jarvis
    Castro, Rui
    Nowak, Robert
    [J]. COMPUTATIONAL IMAGING IV, 2006, 6065
  • [9] Compressed Sensing for Infrared Interferometric Imaging
    Sanchez-Bermudez, Joel
    Rosales, Abel
    Morales, Hector
    Alberdi, Antxon
    Sivaramakrishnan, Anand
    Schodel, Rainer
    Pott, Jorg-Uwe
    [J]. OPTICAL AND INFRARED INTERFEROMETRY AND IMAGING VII, 2020, 11446
  • [10] Sparsity and Compressed Sensing in Radar Imaging
    Potter, Lee C.
    Ertin, Emre
    Parker, Jason T.
    Cetin, Muejdat
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 1006 - 1020