Global solutions of Hartree-Fock theory and their consequences for strongly correlated quantum systems

被引:16
|
作者
Veeraraghavan, Srikant
Mazziotti, David A. [1 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
基金
美国国家科学基金会;
关键词
POTENTIAL-ENERGY SURFACES; COUPLED-CLUSTER METHODS; DENSITY-MATRIX; CONVERGENCE; PRINCIPLES; STABILITY; GEOMETRY; MODEL; RANK; N-2;
D O I
10.1103/PhysRevA.89.010502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a density matrix approach for computing global solutions of Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. Equality of the upper-and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities from the standard solution of the Euler-Lagrange equations. Applications are made to the potential energy curves of the H4 dimer and the N2 molecule.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems
    Veeraraghavan, Srikant
    Mazziotti, David A.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (12):
  • [2] HARTREE-FOCK THEORY FOR COULOMB SYSTEMS
    LIEB, EH
    SIMON, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) : 185 - 194
  • [3] On asymmetric quasiperiodic solutions of Hartree-Fock systems
    Dolbeault, J
    Illner, R
    Lange, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (02) : 314 - 324
  • [4] On Hartree-Fock systems
    Gasser, I
    VLSI DESIGN, 1999, 9 (04) : 357 - 364
  • [6] Hartree-Fock theory of skyrmions in quantum Hall ferromagnets
    Fertig, HA
    Brey, L
    Cote, R
    MacDonald, AH
    Karlhede, A
    Sondhi, SL
    PHYSICAL REVIEW B, 1997, 55 (16): : 10671 - 10680
  • [7] EXISTENCE OF HARTREE-FOCK SOLUTIONS
    ROSENSTEEL, G
    IHRIG, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (08) : 2297 - 2301
  • [8] Solving Hartree-Fock systems with global optimization methods
    Lavor, C.
    Liberti, L.
    Maculan, N.
    Nascimento, M. A. C.
    EPL, 2007, 77 (05)
  • [10] Projected Hartree-Fock theory
    Jimenez-Hoyos, Carlos A.
    Henderson, Thomas M.
    Tsuchimochi, Takashi
    Scuseria, Gustavo E.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (16):