Genetic contributions to regional variability in human brain structure: Methods and preliminary results

被引:165
|
作者
Wright, IC [1 ]
Sham, P
Murray, RM
Weinberger, DR
Bullmore, ET
机构
[1] Kings Coll London, Inst Psychiat, London WC2R 2LS, England
[2] NIMH, NIH, Bethesda, MD 20892 USA
[3] Univ Cambridge, Dept Psychiat, Cambridge, England
基金
英国惠康基金;
关键词
brain anatomy; twins; genetic correlation; matrix; heritability; asymmetry; MRI; path analysis; structural equation modeling;
D O I
10.1006/nimg.2002.1163
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal-parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and limbic areas loaded negatively. Bilateral insula, some frontal regions, and temporal neocortical regions functionally specialized for audition and language loaded strongly on the second PC. We conclude that large samples are required for powerful investigation of genetic effects in imaging data from twins. However, these preliminary results suggest that genetic effects on structure of the human brain are regionally variable and predominantly symmetric in paralimbic structures and lateral temporal cortex. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:256 / 271
页数:16
相关论文
共 50 条
  • [1] Genetic contributions to brain structure
    Strike, Lachlan
    Hansell, Narelle
    Couvy-Duchesne, Baptiste
    Thompson, Paul
    Martin, Nicholas
    de Zubicaray, Greig
    McMahon, Katie
    Wright, Margaret
    BEHAVIOR GENETICS, 2016, 46 (06) : 808 - 808
  • [2] Genetic contributions to human brain morphology and intelligence
    Pol, H. E. Hulshoff
    Peper, J. S.
    Boomsma, D. I.
    Kahn, R. S.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2007, 17 : S217 - S217
  • [3] Genetic contributions to human brain morphology and intelligence
    Hulshoff-Pol, Hilleke E.
    Schnack, Hugo G.
    Posthuma, Danielle
    Mandl, Rene C. W.
    Baare, Wim F.
    van Oel, Clarine
    van Haren, Neeltje E.
    Collins, D. Louis
    Evans, Alan C.
    Amunts, Katrin
    Buergel, Uli
    Zilles, Karl
    de Geus, Eco
    Boomsma, Dorret I.
    Kahn, Rene S.
    JOURNAL OF NEUROSCIENCE, 2006, 26 (40): : 10235 - 10242
  • [4] Exploring the Variability of Human Factors and Usability Testing Methods for Evaluating Medical Devices - Preliminary Results
    Kimalel, Ozelle
    Magee, Justin D. M.
    Boyd, Kyle
    Bond, Raymond
    PROCEEDINGS OF THE EUROPEAN CONFERENCE ON COGNITIVE ERGONOMICS, ECCE 2023: Responsible Technology Community, Culture, and Sustainability, 2023,
  • [5] Genetic and Environmental Contributions to Neonatal Brain Structure: A Twin Study
    Gilmore, John H.
    Schmitt, Eric
    Knickmeyer, Rebecca
    Lin, Weili
    Styner, Martin
    Gerig, Guido
    Neale, Michael
    BIOLOGICAL PSYCHIATRY, 2010, 67 (09) : 40S - 41S
  • [6] Genetic and Environmental Contributions to Neonatal Brain Structure: A Twin Study
    Gilmore, John H.
    Schmitt, James Eric
    Knickmeyer, Rebecca C.
    Smith, Jeffrey K.
    Lin, Weili
    Styner, Martin
    Gerig, Guido
    Neale, Michael C.
    HUMAN BRAIN MAPPING, 2010, 31 (08) : 1174 - 1182
  • [7] THE PROBLEM OF INDIVIDUAL VARIABILITY IN HUMAN BRAIN STRUCTURE
    BOGOLEPOVA, IN
    AMUNTS, VV
    ORZHEKHOVSKAYA, NS
    MALOFEYEVA, LI
    VESTNIK ROSSIISKOI AKADEMII MEDITSINSKIKH NAUK, 1994, (01): : 34 - 36
  • [8] Genetic variability in European populations of an invasive American crayfish: preliminary results
    Barbaresi, Silvia
    Fani, Renato
    Gherardi, Francesca
    Mengoni, Alessio
    Souty-Grosset, Catherine
    BIOLOGICAL INVASIONS, 2003, 5 (03) : 269 - 274
  • [9] Genetic Variability in European Populations of an Invasive American Crayfish: Preliminary Results
    Silvia Barbaresi
    Renato Fani
    Francesca Gherardi
    Alessio Mengoni
    Catherine Souty-Grosset
    Biological Invasions, 2003, 5 : 269 - 274
  • [10] CONTRIBUTIONS IN CROWDFUNDING: PRELIMINARY RESULTS OF THE STUDY ON THE MOTIVATION OF CONTRIBUTORS AND THE STRUCTURE OF REWARDS
    Mazurek, Szymon
    Klimczak, Mikolaj
    Sobczak, Jakub
    13TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2019, : 1075 - 1084