Central limit theorem for the variable bandwidth kernel density estimators

被引:2
|
作者
Nakarmi, Janet [1 ]
Sang, Hailin [2 ]
机构
[1] Univ Cent Arkansas, Dept Math, Conway, AR 72035 USA
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Central limit theorem; Variable bandwidth kernel density; estimation;
D O I
10.1016/j.jkss.2018.01.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the ideal variable bandwidth kernel density estimator introduced by McKay (1993a, b) and Jones et al. (1994) and the plug-in practical version of the variable bandwidth kernel estimator with two sequences of bandwidths as in Gine and Sang (2013). Based on the bias and variance analysis of the ideal and plug-in variable bandwidth kernel density estimators, we study the central limit theorems for each of them. The simulation study confirms the central limit theorem and demonstrates the advantage of the plug-in variable bandwidth kernel method over the classical kernel method. (C) 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 215
页数:15
相关论文
共 50 条