Positive solution for first-order discrete periodic boundary value problem

被引:14
|
作者
Sun, Jian-Ping [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
关键词
discrete periodic boundary value problem; positive solution; fixed point; cone;
D O I
10.1016/j.aml.2006.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, existence criteria for a positive solution for the following first-order discrete periodic boundary value problem: Delta x (k) + f (k, x (k + 1)) = 0, k is an element of [0, T] x(0) = x(T + 1) are established by using a fixed point theorem for operators on a cone. An example is also included to illustrate the importance of the result obtained. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1244 / 1248
页数:5
相关论文
共 50 条
  • [1] Generalized quasilinearization and first-order periodic boundary value problem
    Vatsala, AS
    Stutson, D
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1996, 77 (2-3) : 113 - 129
  • [2] On a first-order semipositone discrete fractional boundary value problem
    Goodrich, Christopher S.
    [J]. ARCHIV DER MATHEMATIK, 2012, 99 (06) : 509 - 518
  • [3] On a first-order semipositone discrete fractional boundary value problem
    Christopher S. Goodrich
    [J]. Archiv der Mathematik, 2012, 99 : 509 - 518
  • [4] Periodic Orbits of Nonlinear First-Order General Periodic Boundary Value Problem
    Wang, Feng
    Zhang, Fang
    Zhu, Hailong
    Li, Shengjun
    [J]. FILOMAT, 2016, 30 (13) : 3427 - 3434
  • [5] Positive solutions for first order periodic boundary value problem
    Peng, SG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) : 345 - 351
  • [6] Periodic Boundary Value Problem For First-Order Impulsive Differential Equations
    Xiao, Li
    Liu, Ting
    Liu, Anping
    [J]. PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 347 - 350
  • [7] On first-order discrete boundary value problems
    Tisdell, Christopher C.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (12) : 1213 - 1223
  • [8] Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses
    Nieto, Juan J.
    Rodriguez-Lopez, Rosana
    Villanueva-Pesqueira, Manuel
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2011, 10 (04) : 323 - 339
  • [9] Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses
    Juan J. Nieto
    Rosana Rodríguez-López
    Manuel Villanueva-Pesqueira
    [J]. Fuzzy Optimization and Decision Making, 2011, 10 : 323 - 339
  • [10] On the periodic boundary value problem for first-order functional-differential equations
    Lomtatidze, AG
    Hakl, R
    Puza, B
    [J]. DIFFERENTIAL EQUATIONS, 2003, 39 (03) : 344 - 352