Lexical Recognition Test (LRT) themes are one of the main methods that are widely used to measure lan-guage proficiency of some common languages such as English, German and Spanish. However, similar research for Arabic is still at development stages, and existing proposals mainly use human-crafted meth-ods. In this paper, a new methodology, based on a newly developed algorithm, was proposed with the aim of automatically constructing high quality nonwords associated with a real quick measurement of Arabic proficiency levels (Arabic LRT). The suggested algorithm will automatically generate nonwords based on Arabic special characteristics they are orthography (spelling), phonology (pronunciation), n -grams and the word frequency map, which is an important factor to create a multi-level test. With the help of a large dataset of Arabic vocabulary, the proposed algorithm was experimented. For this purpose, a Web-based application, following the suggested methodology, was designed and implemented to facil-itate the process of collecting and analyzing learners' responses. The experimental results have shown that the LRT questions that were automatically generated by the proposed system had confused the learners, this is clear from the output of the confusion matrix which showed that (1/3) of the generated nonwords were able to distract the learners (with accuracy 65%). Consequentially, the results of recall and precision have smaller values, 0.52 and 0.48, respectively.(c) 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).