Partial K-way negativities of pure four-qubit entangled states

被引:6
|
作者
Sharma, S. Shelly [1 ]
Sharma, N. K. [2 ]
机构
[1] Univ Estadual Londrina, Dept Fis, BR-86051990 Londrina, Parana, Brazil
[2] Univ Estadual Londrina, Dept Matemat, BR-86051990 Londrina, Parana, Brazil
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 06期
关键词
polynomials; quantum communication; quantum computing; quantum entanglement; SEPARABILITY;
D O I
10.1103/PhysRevA.79.062323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It was shown by Verstraete [Phys. Rev. A 65, 052112 (2002)] that by stochastic local operations and classical communication, a pure state of four qubits can be transformed to a state belonging to one of a set of nine families of states. By using selective partial transposition, we construct partial K-way negativities to measure the genuine four-partite, tripartite, and bipartite entanglements of single-copy states belonging to the nine families of four-qubit states. Partial K-way negativities are polynomial functions of local invariants characterizing each family of states, as such, entanglement monotones.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Four qubit entangled pure states and K-way negativities
    Sharma, N. K.
    Sharma, S. Shelly
    FRONTIERS OF FUNDAMENTAL AND COMPUTATIONAL PHYSICS, 2008, 1018 : 46 - +
  • [2] The partial K-way negativities and entanglement of N qubit states
    Sharma, S. Shelly
    Sharma, N. K.
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 75 - +
  • [3] Partial K-way negativities and three-tangle for three-qubit states
    Sharma, S. Shelly
    Sharma, N. K.
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [4] Four-qubit entangled symmetric states with positive partial transpositions
    Tura, J.
    Augusiak, R.
    Hyllus, P.
    Kus, M.
    Samsonowicz, J.
    Lewenstein, M.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [5] Quantum nonlocality of generic family of four-qubit entangled pure states
    Ding Dong
    He Ying-Qiu
    Yan Feng-Li
    Gao Ting
    CHINESE PHYSICS B, 2015, 24 (07)
  • [6] Quantum nonlocality of generic family of four-qubit entangled pure states
    丁东
    何英秋
    闫凤利
    高亭
    Chinese Physics B, 2015, (07) : 85 - 89
  • [7] Quantum nonlocality of four-qubit entangled states
    Wu, Chunfeng
    Yeo, Ye
    Kwek, L. C.
    Oh, C. H.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [8] Extremal entangled four-qubit pure states with respect to multiple entropy measures
    Liu Dan
    Zhao Xin
    Long Gui-Lu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 329 - 332
  • [10] All maximally entangled four-qubit states
    Gour, Gilad
    Wallach, Nolan R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)