Nonparametric relative recursive regression

被引:1
|
作者
Slaoui, Yousri [1 ]
Khardani, Salah [2 ]
机构
[1] Univ Poitiers, Lab Math & App, Futuroscope, France
[2] Ecole Natl Sci & Technol Avancees Borj Cedria, Lab Reseaux Intelligents & Nanotechnol, Ben Arous, Tunisia
来源
DEPENDENCE MODELING | 2020年 / 8卷 / 01期
关键词
nonparametric regression; stochastic approximation algorithm; smoothing; curve fitting; relative regression; STOCHASTIC-APPROXIMATION METHOD; BANDWIDTH SELECTION; ERROR PREDICTION; CONVERGENCE; RATES;
D O I
10.1515/demo-2020-0013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose the problem of estimating a regression function recursively based on the minimization of the Mean Squared Relative Error (MSRE), where outlier data are present and the response variable of the model is positive. We construct an alternative estimation of the regression function using a stochastic approximation method. The Bias, variance, and Mean Integrated Squared Error (MISE) are computed explicitly. The asymptotic normality of the proposed estimator is also proved. Moreover, we conduct a simulation to compare the performance of our proposed estimators with that of the two classical kernel regression estimators and then through a real Malaria dataset.
引用
收藏
页码:221 / 238
页数:18
相关论文
共 50 条