CLOSED ORBITS ON PARTIAL FLAG VARIETIES AND DOUBLE FLAG VARIETY OF FINITE TYPE

被引:0
|
作者
Kondo, Kensuke [1 ]
Nishiyama, Kyo [1 ]
Ochiai, Hiroyuki [2 ]
Taniguchi, Kenji [1 ]
机构
[1] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan
[2] Kyushu Univ, Inst Math For Ind, Nishi Ku, Fukuoka 8190395, Japan
关键词
symmetric pair; multiple flag variety; Hermitian symmetric space;
D O I
10.2206/kyushujm.68.113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive algebraic group over C. We denote by K = (G(theta))(0) the identity component of the fixed points of an involutive automorphism theta of G. The pair (G, K) is called a symmetric pair. Let Q be a parabolic subgroup of K. We want to find a pair of parabolic subgroups P-1,P- P-2 of G such that (i) P-1 boolean AND P-2 = Q and (ii) P-1 P-2 is dense in G. The main result of this article states that, for a simple group G, we can find such a pair if and only if (G, K) is a Hermitian symmetric pair. The conditions (i) and (ii) imply that the K-orbit through the origin (eP(1), eP(2)) of G/P-1 x G/P-2 is closed and it generates an open dense G-orbit on the product of partial flag variety. From this point of view, we also give a complete classification of closed K-orbits on G/P-1 x G/P-2.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 50 条
  • [1] Diagonal Orbits in a Type A Double Flag Variety of Complexity One
    Can, Mahir Bilen
    Le, Tien
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2021, 38 (01): : 97 - 110
  • [2] Diagonal Orbits in a Type A Double Flag Variety of Complexity One
    Mahir Bilen Can
    Tien Le
    Order, 2021, 38 : 97 - 110
  • [3] ON ORBITS IN DOUBLE FLAG VARIETIES FOR SYMMETRIC PAIRS
    He, Xuhua
    Nishiyama, Kyo
    Ochiai, Hiroyuki
    Oshima, Yoshiki
    TRANSFORMATION GROUPS, 2013, 18 (04) : 1091 - 1136
  • [4] On Orbits in Double Flag Varieties for Symmetric Pairs
    He X.
    Ochiai H.
    Nishiyama K.
    Oshima Y.
    Transformation Groups, 2013, 18 (4) : 1091 - 1136
  • [5] Multiple flag varieties of finite type
    Magyar, P
    Weyman, J
    Zelevinsky, A
    ADVANCES IN MATHEMATICS, 1999, 141 (01) : 97 - 118
  • [6] Double Flag Varieties for a Symmetric Pair and Finiteness of Orbits
    Nishiyama, Kyo
    Ochiai, Hiroyuki
    JOURNAL OF LIE THEORY, 2011, 21 (01) : 79 - 99
  • [7] Symplectic multiple flag varieties of finite type
    Magyar, P
    Weyman, J
    Zelevinsky, A
    JOURNAL OF ALGEBRA, 2000, 230 (01) : 245 - 265
  • [8] An example of orthogonal triple flag variety of finite type
    Matsuki, Toshihiko
    JOURNAL OF ALGEBRA, 2013, 375 : 148 - 187
  • [9] A Deodhar-type stratification on the double flag variety
    Webster, Ben
    Yakimov, Milen
    TRANSFORMATION GROUPS, 2007, 12 (04) : 769 - 785
  • [10] A Deodhar-type stratification on the double flag variety
    Ben Webster
    Milen Yakimov
    Transformation Groups, 2007, 12 : 769 - 785